Функция сердца в норме и при патологии
Видео: Билет 086. ЛИМФАТИЧЕСКАЯ СИСТЕМА, ЕЕ СОСТАВНЫЕ ЧАСТИ, ФУНКЦИИ, ЗНАЧЕНИЕ В НОРМЕ И ПАТОЛОГИИ.
Евгений Браунвальд (Eugene Braunwald)Клеточные механизмы сердечного сокращения
Миокард состоит из отдельных поперечнополосатых мышечных клеток (волокон), диаметр которых в норме составлят 10—15 мкм, а длина — 30—60 мкм (рис. 181-1, а). Каждое волокно включает в себя множество пересекающихся и соединенных между собой нитей (миофибрилл), которые идут на всем протяжении волокна и в свою очередь состоят из периодически повторяющихся структур — саркомеров. В цитоплазме между миофибриллами располагаются одно центрально расположенное ядро, многочисленные митохондрии и внутриклеточные системы мембран.
Каждый саркомер, являющийся структурной и функциональной единицей сокращений, ограничен с двух сторон темными линиями, так называемыми Z-линиями (см. рис. 181-1). Расстояние между Z-линиями зависит от степени сокращения или растяжения мышц и варьирует от 1,6 до 2,2 мкм. Внутри саркомера можно видеть чередующиеся светлые и темные полосы, придающие волокнам миокарда характерный исчерченный вид. В центре саркомера расположена широкая темная полоса постоянной ширины (1,5 мкм) — А-полоса, с двух сторон ее окружают две более светлые I-полосы, ширина которых может меняться. Саркомер сердечной мышцы, так же как и скелетной, построен из миофиламентов двух типов. Более толстые филаменты, состоящие главным образом из белка миозина, идут в продольном направлении и ограничиваются А-полосами. Их диаметр около 100 А, длина— 1,5—1,6 мкм- к периферии они сужаются. Тонкие филаменты состоят прежде всего из актина. Они протянуты между Z-линиями и проходят через I-и А-полосы Диаметр их составляет приблизительно 50 А, длина 1,0 мкм. Таким образом, толстые и тонкие филаменты накладываются друг на друга только в пределах полос А, полосы I содержат исключительно тонкие филаменты (см. рис. 181-1). При электронной микроскопии можно обнаружить, что между толстыми и тонкими филаментами, проходящими в полосе А, тянутся поперечные мостики.
Процесс сокращения. «Скользящая» модель мышечного сокращения основана на фундаментальном положении о том, что длина как толстых, так и тонких филаментов остается постоянной и в покое, и во время сокращения. При активации саркомера нити актина и миозина начинают взаимодействовать между собой на уровне соединяющих мостиков, в результате чего нити актина продвигаются глубже внутрь полосы А. В течение всего сокращения ширина полосы А остается постоянной, в то время как полоса I становится уже, а линии Z двигаются по направлению друг к другу.
Молекула миозина представляет собой сложный, асимметричный волокнистый белок с мол. массой около 500000. Она состоит из части, похожей на удочку, длина которой составляет 1500 А, и глобулярной части, расположенной на ее конце. Эта глобулярная часть миозина обладает аденозинтрифосфатной (АТФ-азной) активностью и также участвует в образовании мостиков между миозином и актином. Удлиненная часть молекулы миозина формирует толстый миофиламент. Она располагается строго в одну линию с такими же частями других молекул миозина, и они все ориентированы в одном направлении. При этом глобулярная часть молекулы отклоняется в сторону, так что получает возможность взаимодействовать с актином, генерируя энергию и вызывая сокращение (рис. 181-2, а). Мол. масса актина 47000. Тонкие филаменты состоят из двойных спиралей, формируя две цепи молекул актина, переплетенных между собой и тесно связанных с регуляторными белками — тропомиозином и тропонином (см. рис. 181-2,6). Последний может быть разделен на три компонента: тропонины С, I и Т (см. рис. 181-2, в). В отличие от миозина актин не обладает существенной энзиматической активностью, однако он.способен обратимо связываться с миозином в присутствии АТФ и ионов магния, которые активируют АТФ-азу миозина. В расслабленной мышце это взаимодействие подавляется тропомиозином. Во время активации ионы кальция присоединяются к тропонину С, что приводит к конформационным изменениям, в результате которых связывающие мостики актина перемещаются кнаружи и становятся доступными для взаимодействия. Физические изменения в связывающих мостиках вызывают скольжение актина вдоль нитей миозина, что неизбежно приводит к укорочению мышцы или развитию напряжения. Расщепление АТФ сопровождается диссоциацией соединяющих мостиков между миозином и актином. Образование и разрыв связей между нитями актина и миозина происходят циклично в соответствии с колебаниями концентрации ионов Са. Связи нарушаются, когда концентрация ионов Са снижается ниже критического уровня, а комплекс тропонин — тропомиозин предотвращает взаимодействия между соединительными мостиками миозина и нитями актина. Ионизированный кальций служит основным медиатором, регулирующим инотропное состояние сердца. Большинство препаратов, усиливающих инотропную функцию миокарда, включая сердечные гликозиды и катехоламины, опосредуют свое действие через повышение доставки ионов кальция к миофиламентам.
Саркоплазматическая сеть (см. рис. 181-1,6) представляет собой сложную цепь соединенных между собой мембранных внутриклеточных каналов, обволакивающую миофибриллы. Однако в клетках сердечной мышцы саркоплазматическая сеть менее развита, чем в клетках скелетных мышц. Она состоит из множества продольно расположенных переплетенных между собой мембранных канальцев, тесно прилегающих к поверхности каждого саркомера. Саркоплазматическая сеть не имеет непосредственного продолжения за границами клетки. С саркоплазматической сетью тесно, как функционально, так и структурально, связана система поперечных канальцев, или Т-система, образованная каналоподобными выпячиваниями сарколеммы, которые проникают внутрь миокардиального волокна вдоль Z-линий, т. е. концевых частей саркомеров.
Активация клеток миокарда. В покое клетка миокарда поляризована. т. е. внутренняя поверхность мембраны имеет отрицательный заряд по отношению к наружной поверхности. При этом трансмембранный потенциал составляет от —80 до --100 мВ (гл. 183). Главную роль в создании этого потенциала покоя играет сарколемма, которая в состоянии покоя практически непроницаема для ионов Na и имеет натрий-калийзависимый насос, изгоняющий ионы Na из клетки. Для работы этого насоса требуется аденозинтрифосфат (АТФ). Таким образом, внутри клетки накапливается относительно большое количество ионов К и значительно меньше ионов Na, в то время как внеклеточная среда богата ионами Nа и бедна ионами К. В свою очередь в состоянии покоя количество ионов Са вне клетки значительно превышает содержание свободных ионов Са внутри нее.
Рис. 181-2. Схематически показано взаимодействие сократительных белков, а также роль кальция как активирующего посредника. а — показано относительное расположение сократительных (миозина и актина) и регуляторных белков (тропонинового комплекса и тропомиозина) в миофиламенте- б — сокращение происходит, когда головки молекул миозина, образующие поперечные мостики толстых нитей, связываются с актином. Затем меняется ориентация поперечных мостиков, что приводит к смещению тонких нитей но направлению к центру саркомера. Для активации необходимо связывание ионов Са с тропониновым комплексом, в результате чего снимается тормозящее влияние связи миозина и актина. Одной из серий химических реакций, лежащих в основе мышечного сокращения, является гидролиз АТФ, вызывающий смещение поперечных мостиков. Релаксация наступает после того, как ионы Са2+ отщепляются от тропонина- в — молекулярная перестройка на уровне тонких нитей затрагивает регуляторные белки (тропомиозин и гропонины С, I и Т) и заключается в их аллостерических изменениях. Связываясь с тропонином С, кальций ослабляет связь между тропонином I и актином. Развивающаяся диссоциация тропонина Т и актиновоп основы тонких нитей приводит к смещению тропомиозина таким образом, что его активные участки становятся доступными для взаимодействия с миозином. С разрешения: А. М. Katz, V. Е. Smith. Hosp. Proc., 1984, 19 (1), 69. |
Во время плато потенциала действия (фаза 2) отмечается медленный ток электрических зарядов внутрь клетки. Он прежде всего обусловлен движением ионов Са (рис. 181-3), хотя абсолютные количества .этого иона, пересекающие поверхностную мембрану, относительно малы и сами по себе не могут вызвать полноценную активацию контрактильного аппарата. Деполяризующий ток зарядов распространяется не только по поверхности клетки, но и проникает глубоко в нее, что обеспечивается разветвленной Т-системой. Следствием транссарколеммального движения ионов Са является высвобождение значительно больших его количеств из саркоплазматической сети. Этот процесс получил название «регенеративного высвобождения» ионов Са.
Ионы Са диффундируют по направлению к саркомеру и, как было описано выше, связываются с тропонином, блокируя этот ингибитор сокращения, и активируют миофиламенты, вызывая сокращение. Затем ионы Са вновь накапливаются в саркоплазматической сети, что, естественно, влечет снижение концентрации этого иона в миофибриллах до уровня, при котором взаимодействие актина и миозина между собой, лежащее в основе сокращения, становится невозможным. Таким образом происходит расслабление мышцы. Очевидно, что в основе периодически сменяющихся сокращений и расслаблении сердечной мышцы лежит способность клеточной мембраны, поперечных канальцев и саркоплазматической сети распространять в пространстве потенциал действия, высвобождать и вновь накапливать ионы Са.
Основным источником энергии, обеспечивающей практически всю механическую работу по сокращению клеток миокарда, служит АТФ, образующийся при субстратном окислении. Запасы высокоэнергетических фосфатов равномерно распределяются между АТФ и креатинфосфатом. Активность миозин-АТФазы определяет скорость образования и распада соединенных мостиков между актином и миозином, а следовательно, и скорость сокращения мышцы.
Значение длины мышцы. Сила сокращения поперечнополосатой мышцы любого типа, включая и сердечную мышцу, зависит от ее исходной длины. Наиболее мощное сокращение саркомера наблюдают при длине 2,2 мкм. Именно при такой длине саркомера расположение обоих видов миофиламентов по отношению друг к другу наиболее благоприятно для их взаимодействия. Фактом, подтверждающим гипотезу скольжения миофиламентов, является уменьшение создаваемой силы прямо пропорционально уменьшению площади соприкосновения толстых и тонких нитей, а следовательно, и количеству реактивных участков. Имеются данные о том, что длина саркомера определяет также степень активности контрактильной системы, т. е. степень ее чувствительности к ионам Са. Максимальная активность установлена при длине саркомера 2,2 мкм. Если длина саркомера увеличивается до 3,65 мкм, то создаваемое напряжение падает до нуля, а тонкие нити полностью выходят за пределы А-полосы. С другой стороны, если длина саркомера менее 2,0 мкм, то происходит скручивание тонких нитей и их двойной перегиб. Одновременно снижается чувствительность контрактильных локусов к ионам Са, а следовательно, и сила сокращения.
Зависимость развиваемой силы сокращения от исходной длины мышечных волокон является решающим фактором, определяющим функцию сердечной мышцы. Она лежит в основе правила Франка — Старлинга (закона сердца Старлинга), которое утверждает, что в определенных границах увеличение исходного объема желудочка, являющегося производным от длины мышцы, приводит к усилению сокращения желудочка. Было установлено, что в сердечной мышце длина саркомера прямо пропорциональна длине мышцы. Эта зависимость соответствует восходящему колену кривой «длина — активное напряжение мышцы». По мере уменьшения длины мышцы до того момента, когда создаваемое напряжение приближается к нулю, а длина саркомера — к 1,5 мкм, I-полосы сначала сужаются, а затем и вовсе исчезают, в то время как ширина А-полос остается постоянной. В этот момент Z-линии упираются в края А-полос. Таким образом, кривая зависимости силы активного напряжения мышцы от длины саркомера отражает ультраструктурный механизм Старлинга для мышцы сердца.
Рис. 181-3. Схема движения ионов кальция. Кальциевые токи, активирующие мышечное сокращение, направлены вниз, вызывающие расслабление мышц — вверх. Как видно, в покое кальциевые каналы мембран сарколеммы клеток сердечной мышцы закрыты, а внутриклеточный кальций находится в саркоплазматической сети. При возбуждении и деполяризации мембраны натриевые каналы (не показаны), чувствительные к изменению электрического напряжения, и кальциевые каналы сарколеммы открываются, обусловливая быстрое поступление в клетку внеклеточного натрия и кальция. В настоящее время считается, что вхождение ионов Са в клетку извне вызывает его высвобождение из саркоплазматической сети, что и индуцирует сокращение. Необходимым условием расслабления сердечной мышцы является повторный захват кальция АТФ-зависимым кальциевым насосом, расположенным в саркоплазматической сети. Важно то, что сокращение активируется главным образом пассивным током ионов Са из саркоплазматической сети. Напротив, во время диастолы кальций должен активно выкачиваться из цитозоля, обеспечивая возможность релаксации. Во время диастолы также затрачивается энергия на восстановление градиентов концентраций натрия и кальция по обе стороны сарколеммы, что необходимо для обеспечения деполяризующих ионных токов, участвующих в генерации потенциала действия. Транспорт ионов Na осуществляется сарколеммальным натриевым насосом (натрия-калиевая АТФаза), использующим энергию АТФ для выкачивания натрия из клетки в обмен на калий. Образующийся в результате градиент концентрации натрия и является основным фактором, обеспечивающим активный транспорт ионов Са из клетки во время релаксации посредством натрий-кальциевого обмена. [С разрешения из: А. М, Katz, V. Е. Smith. — Hosp. Ргос., 1984, 19 (1), 69.]
Миокардиальная механика
Механическая активность всех мышц проявляется в двух вариантах: укорочение и развитие напряжения. Хилл (Hill) установил, что скорость укорочения скелетной мышцы обратно пропорциональна развиваемому ею напряжению. Это выражается так называемой зависимостью «сила — скорость», которая в настоящее время рассматривается как фундаментальная характеристика мышцы. Другими словами, чем больше нагрузка на мышцу, тем меньше скорость ее укорочения, и наоборот. Зависимость «сила — скорость» применима также и к сердечной мышце. Однако именно по этому признаку и различаются скелетная и сердечная мышцы. Для скелетной мышцы может быть построена лишь одна фиксированная кривая зависимости силы от скорости, т. е. при какой-либо постоянной длине мышцы сила и скорость ее сокращения относятся друг к другу одинаковым образом. Сократительная способность скелетной мышцы усиливается при вовлечении в процесс дополнительных мышечных волокон, а следовательно, и моторных единиц, а также при увеличении частоты нервных импульсов. При этом сократимость каждого отдельного волокна остается постоянной. Несмотря на то что длина мышцы в покое существенно влияет на характер ее сокращения, в условиях in vivo этот параметр остается практически постоянным, поскольку скелетные мышцы прикреплены к костям. В то же время количество клеток миокарда, так же как и миофибрилл и саркомеров в них, активирующихся при каждом сокращении сердца, остается постоянным. Однако сократимость миокарда может быстро меняться в физиологических условиях, если изменяется длина мышечных волокон в покое и их инотропное состояние, т. е. сократимость. Изменение обоих этих факторов приводит к сдвигу соотношения силы скорости и сокращения.
Изменения сократимости миокарда могут быть выражены двумя основными типами смещения кривой «сила—скорость». На рис. 181-4, а представлена целая серия кривых «сила — скорость», полученных на одном препарате изолированного миокарда. Каждая кривая была построена для различных величин преднагрузки, т. е. при разной степени растяжения мышцы. Обратите внимание на то, что изменение преднагрузки меняет и величину проекции кривой «сила — скорость» на горизонтальной оси. Уменьшение этой проекции свидетельствует об увеличении изометрической силы, развиваемой мышцей. Однако в определенных рамках эти колебания преднагрузки, видимо, не влияют на скорость укорочения, поскольку проекция всех кривых на вертикальную ось остается постоянной. Таким образом, изменение исходной длины сердечной мышцы приводит к сдвигу кривой «сила — скорость» прежде всего за счет изменения общей силы, развиваемой мышцей. Данный процесс иллюстрируется кривой «длина при изометрическом сокращении — напряжение», представленной на вставке на рис. 181-4, а.
Этот сдвиг кривой «сила — скорость» отличается от сдвига, который происходит при воздействии на мышцу препаратов с положительным инотропным действием таких, как ионы кальция, сердечные гликозиды или норадреналин, но при сохранении постоянной исходной длины мышцы (рис. 181-4, б). Важным механизмом действия этих препаратов является повышение концентрации ионов Са вокруг миофиламентов и/или повышение чувствительности миофиламентов к ионам Са. Эти препараты не только повышают силу, которую способна развить мышца, но и увеличивают скорость укорочения ненагруженной мышцы. В результате увеличивается проекция кривой «сила — скорость» на горизонтальную ось, сдвигая кривую «длина при изометрическом сокращении — напряжение мышцы» вверх, а также проекция кривой на вертикальную ось.
Было высказано предположение о том, что увеличение исходной длины мышцы до оптимальной величины сопровождается возрастанием числа точек соприкосновения накладывающихся друг на друга контрактильных филаментов внутри саркомера, а также усиливает их сократимость, т. е. чувствительность к ионам кальция. Изменение инотропного состояния, характеризуемого повышением скорости укорочения ненагруженной мышцы, может также быть следствием активации циклических процессов, в результате которых генерируется энергия, при неизмененной длине мышцы. Создается впечатление, что повышение сократимости прежде всего связано с увеличением содержания кальция внутри клетки,
Рис. 181-4. Кривые «сила—скорость», полученные на препарате изолированного миокарда. а — влияние увеличения исходной длины мышцы на взаимоотношения силы и скорости сокращения сосочковой мышцы кошки. Исходная скорость укорочения была представлена в виде зависимости от нагрузки при пяти различных длинах мышцы. Максимальная скорость укорочения существенно не изменяется, в то время как максимальная сила сокращения увеличивается. На вставке указаны места на кривых «длина—напряжение», в которых брали значения для кривых «сила — скорость»- б — влияние норадреналина на взаимоотношения силы и скорости сокращения сосочковой мышцы кошки. Наблюдается увеличение как максимальной скорости укорочения мышцы, так и силы сокращения. (Из: Вraunwald et al., 1976.)
Сокращение здорового желудочка
При классическом подходе к сердцу как к насосу центральную роль играет взаимосвязь давления наполнения, или диастолического объема, желудочка (длина мышечного волокна) и ударного объема (зависимость Франка — Старлинга). На препарате «сердце—легкие» было показано, что ударный объем зависит от длины мышечных волокон в диастолу. При нарушении сократительной способности сердца его ударный объем снижается по сравнению с нормальными величинами, но сохраняется нормальным или незначительно повышается конечно-диастолический объем. Изучение взаимосвязи между средним конечно-диастолическим давлением в предсердии или желудочке (кривая желудочковой функции) позволяет оценить контрактильное, или инотропное, состояние желудочка. Значительное повышение сократимости желудочка сопровождается сдвигом кривой желудочковой функции вверх и влево, в то время как угнетение сократимости характеризуется смещением этой кривой вниз и вправо.
Во время адренергической стимуляции миокарда при таких стрессовых состояниях, как физическая нагрузка, наблюдали относительно небольшое изменение конечно-диастолических размеров желудочка. Между тем сердечный выброс, скорость кровотока в аорте, ударная работа и скорость повышения внутрижелудочкового давления возрастали очень существенно. Таким образом, параметры, регуляция которых опосредована через нервные и гуморальные механизмы, а именно сократимость миокарда, частота сердечных сокращений, венозный возврат и периферическое сосудистое сопротивление, играют значительно более важную роль в адаптации кровообращения к различным воздействиям, чем конечно-диастолический объем желудочка, зависящий от механизма Франка — Старлинга.
Большое влияние такого нейротрансмиттерного вещества, как норадреналин, на механические свойства миокарда известно уже давно. Непосредственная стимуляция симпатических нервов сердца вызывает активацию желудочковой функции, что является следствием высвобождения из симпатических нервных окончаний норадреналина. Доказательством адренергической природы этого явления служит одновременное развитие тахикардии, уменьшение размеров сердца, повышение скорости выброса крови и напряжения миокарда.
Регуляция сердечной деятельности и сердечного выброса
Степень укорочения сердечной мышцы млекопитающих, а следовательно, и ударного объема интактного желудочка в конечном итоге определяется тремя факторами: длиной мышцы в момент начала сокращения, т. е. преднагрузкой- инотропным состоянием миокарда, т. е. взаимоотношением между создаваемой силой, скоростью сокращения и длиной мышцы и напряжением, которое должна развить мышца во время сокращения, т. е. постнагрузкой. Если наполнение желудочков поддерживается на достаточном уровне, то величина сердечного выброса при любом ударном объеме зависит от частоты сердечных сокращений.
Конечно-диастолический объем желудочка (преднагрузка). Независимо от инотропного состояния сердечной мышцы, ее работа регулируется прежде всего длиной мышечных волокон желудочка в конце диастолы, а следовательно, диастолическим объемом желудочка. Следующие факторы являются основными детерминантами желудочковой преднагрузки в здоровом организме.
Общий объем крови. При снижении этого параметра, например вследствие кровотечения или длительной рвоты, венозный возврат к сердцу сокращается (гл. 29) и уменьшается конечно-диастолический объем желудочка, а следовательно, и желудочковая деятельность, что отражается на работе желудочка.
Распределение объема крови. При любом постоянном общем объеме крови конечно-диастолический объем желудочка зависит от распределения крови между внутри- и внегрудным отделами. Этот показатель в свою очередь определяется:
1. Положением тела. Под влиянием гравитационных сил кровь стремится скапливаться в нижележащих отделах тела. При вертикальном движении внегрудная порция крови увеличивается за счет его внутригрудного объема. В результате работа желудочка уменьшается.
2. Внутригрудное давление. Обычно среднее внутригрудное давление отрицательно, что способствует увеличению внутригрудного объема крови и конечно-диастолического объема желудочка, а также стимулирует возврат крови к сердцу, в особенности во время вдоха. Повышение внутригрудного давления, отмечающегося в случае напряженного пневмоторакса, при выполнении пробы Вальсальвы, во время длительных приступов кашля или же в процессе искусственной вентиляции легких под положительным давлением, препятствует венозному возврату к сердцу, уменьшает внутригрудной объем крови, и в конечном итоге приводит к снижению ударного объема и работы желудочков.
3. Давление в полости перикарда. Повышаясь, например, при тампонаде перикарда (гл. 194), давление в полости перикарда препятствует заполнению полостей сердца кровью, в результате чего уменьшаются диастолический объем желудочка, ударный объем и работа желудочка.
4. Венозный тонус. Венозная система не является пассивным звеном, соединяющим системное капиллярное русло и правое предсердие. Напротив, гладкие мышцы стенок вен и венул реагируют на целый ряд нервных и гуморальных стимулов. Веноконстрикция развивается во время мышечной работы, глубокого дыхания, страха или выраженной гипотензии и направлена на уменьшение внегрудного и увеличение внутригрудного объемов крови, поддержание венозного возврата к сердцу и желудочковой деятельности.
5. Насосное действие скелетных мышц. При физической работе сокращающиеся скелетные мышцы выдавливают кровь из венозных сосудов и с помощью венозных клапанов перемещают ее в центральные отделы организма, повышая таким образом внутригрудной объем крови, конечно-диастолический объем желудочка и его работу.
Сокращение предсердий. Энергичное, синхронизированное сокращение предсердия обеспечивает полноценное наполнение желудочка кровью и увеличивает его конечно-диастолический объем. Значение правильной работы предсердий в заполнении желудочков особенно высоко у больных с гипертрофией желудочков, у которых отсутствие эффективной систолы предсердий (как, например, в случае трепетания предсердий) приводит к уменьшению конечно-диастолического давления и объема желудочков, что сопровождается в конечном итоге падением сердечной деятельности.
Инотропное состояние (сократимость миокарда). Активность сердечной деятельности при каком-либо постоянном конечно-диастолическом объеме желудочка, т. е. расположение кривой желудочковой функции, зависит от целого ряда факторов. Роль всех этих факторов заключается в воздействии на взаимоотношение между силой, скоростью сокращения миокарда и длиной его волокон.
Симпатическая активность. Количество норадреналина, высвобождаемое симпатическими нервными окончаниями в сердце, в обычных условиях зависит от частоты следования импульсов по нервным волокнам. Колебания симпатической импульсации отражаются на количестве выделяемого норадреналина, а следовательно, и на количестве ??адренорецепторов миокарда, с которыми он связывается. Этот механизм является наиболее важным из всех, которые обусловливают заметное и быстрое смещение кривых «сила — скорость» и регулируют желудочковую функцию в физиологических условиях.
Циркулирующие катехоламины. Инотропное состояние миокарда усиливается и катехоламинами, поступающими к сердцу с кровью из вне-сердечных симпатических ганглиев н мозгового слоя надпочечников. В кровь эти катехоламины высвобождаются также вследствие стимуляции симпатических нервных волокон.
Взаимоотношение силы и частоты. Расположение кривой «сила — скорость» зависит от частоты и ритма сердечных сокращений. Так, например, желудочковые экстрасистолы сопровождаются возникновением феномена постэкстрасистолической потенциации, в основе которого лежит возрастание поступления ионов кальция в клетки миокарда.
Экзогенно вводимые инотропные препараты. Сердечные гликозиды, изопротеренол и другие симпатомиметические вещества, ионы кальция, кофеин, теофиллин и их производные — все эти фармакологические средства улучшают взаимоотношения между силой и скоростью сокращения миокарда. Это позволяет использовать их в терапевтических целях для усиления работы желудочков при любом конечно-диастолическом объеме.
Физиологические факторы, угнетающие активность миокарда. К ним относятся среди прочих тяжелая гипоксия миокарда, гиперкапния, ишемия и ацидоз. Каждый в отдельности или в сочетании друг с другом эти факторы оказывают угнетающее действие на кривую «сила — скорость» сердечного сокращения и приводят к снижению работы левого желудочка независимо от величины его конечно-диастолического объема.
Фармакологические вещества, угнетающие деятельность сердца. Из множества фармакологических препаратов, обладающих кардиодепрессивным влиянием, можно выделить хинидин, новокаинамид, барбитураты и другие местные и общие анестетики.
Уменьшение массы активного миокарда желудочка. Нарушение общей работы желудочков при любом значении конечно-диастолического объема происходит при потере функциональных возможностей или некрозе какой-либо части миокарда желудочков, даже если оставшийся миокард сохраняет свои сократительные свойства. Подобная ситуация может возникнуть на фоне ишемии миокарда (гл. 189) и является неизбежным следствием инфаркта миокарда (гл. 190).
Эндогенная депрессия миокарда. Несмотря на то что фундаментальные механизмы, лежащие в основе угнетения сократимости миокарда при хронической застойной недостаточности, выяснены не до конца, очевидно, что при этом патологическом состоянии сократимость каждой функциональной единицы миокарда снижается. Результатом является нарушение желудочковой функции, наблюдаемое при любом конечно-диастолическом объеме.
Желудочковая постнагрузка. Величина ударного объема напрямую зависит от степени укорочения волокон миокарда желудочка. Как и в случае изолированной сердечной мышцы, скорость и степень укорочения мышечных волокон миокарда желудочка при том или ином значении длины миокардиального волокна в диастолу и сократимости миокарда обратно пропорциональны постнагрузке, испытываемой мышцей. Величина постнагрузки при здоровом сердце зависит от уровня давления в аорте. Но постнагрузка может быть определена и как напряжение или сила, развиваемые стенкой желудочка во время выброса крови. Следовательно, постнагрузка испытываемая волокнами сердечной мышцы, также зависит от размеров сердца. Это согласуется с законом Лапласа, в соответствии с которым напряжение мышечных волокон равно произведению давления в полости желудочка на радиус желудочка, деленному на толщину стенки желудочка. Таким образом, при одном и том же аортальном давлении постнагрузка, испытываемая дилатированным желудочком, выше, чем желудочком с нормальными размерами. Более того, при любом давлении в аорте и объеме левого желудочка постнагрузка на волокна миокарда обратно пропорциональна толщине стенки миокарда. В свою очередь давление в аорте во многом зависит от периферического сосудистого сопротивления, физических характеристик артериального русла и объема крови, находящегося в нем в момент выброса крови из желудочка. При любом значении конечно-диастолического объема желудочка и уровне сократимости миокарда величина ударного объема левого желудочка прямо зависит от постнагрузки.
Значение желудочковой постнагрузки в регуляции сердечно-сосудистой деятельности проиллюстрировано на рис. 181-5. Как уже указывалось, повышение преднагрузки и сократимости миокарда стимулирует укорочение волокон миокарда, в то время как повышение постнагрузки замедляет этот процесс. Основными детерминантами ударного объема являются степень укорочения волокон миокарда и размеры левого желудочка. Артериальное давление в свою очередь непосредственно зависит от величины произведения сердечного выброса и системного сосудистого сопротивления, в то время как величина постнагрузки определяется размерами левого желудочка и уровнем артериального давления. Повышение артериального давления, вызванное вазоконстрикцией, например, приводит к возрастанию постнагрузки, что по механизму обратной связи оказывает депрессивное влияние на процесс укорочения волокон миокарда, снижает величину ударного объема и сердечного выброса. Это в свою очередь ведет к восстановлению артериального давления до исходного уровня.
Рис. 181-5. Схема взаимодействия различных компонентов, регулирующих сердечную деятельность.
Сплошные линии означают усиливающее влияние, пунктирные—угнетающее. (Из: Braunwald et al., 1976.)
Если функция левого желудочка начинает страдать в результате того или иного заболевания, а его полость расширяться, т. е. утрачивается резерв преднагрузки, то значение постнагрузки левого желудочка как фактора, определяющего функциональную активность миокарда, существенно возрастает. Повышение постнагрузки может быть следствием воздействия на артериальное русло нервных, гуморальных или структурных изменений, происходящих в ответ на снижение сердечного выброса. Такое повышение постнагрузки может приводить к дальнейшему снижению сердечного выброса, поскольку повышает потребность миокарда в кислороде. Лечение вазодилататорами оказывает противоположное действие (гл. 182). В подобных ситуациях любые сдвиги в системе периферического сосудистого русла, видимо, играют основную роль в возникновении тех или иных гемодинамических и метаболических изменений, которые нередко относят за счет прогрессирующего нарушения функции миокарда.
Все факторы, влияющие на сердечную деятельность, сложным образом взаимодействуют между собой, в результате чего сердечный выброс остается на уровне, обеспечивающем метаболические потребности миокарда. У здорового человека нарушение одного из известных механизмов поддержания функции миокарда может не повлиять на величину сердечного выброса. Например, умеренное уменьшение объема крови или десинхронизация сокращений предсердия и желудочка не всегда сопровождаются снижением сердечного выброса в покое. Можно предположить, что другие факторы, такие как учащение симпатической импульсации и стимуляции миокарда, а также увеличение частоты сердечных сокращений, в подобной ситуации повысят сократимость миокарда и обеспечат поддержание сердечного выброса. Существуют также механизмы, предотвращающие увеличение сердечного выброса, если отсутствует физиологическая необходимость в интенсификации кровотока. Так, например, введение сердечных гликозидов здоровым лицам, повышая сократимость миокарда, не приведет к увеличению сердечного выброса. Таким образом, анализируя влияние различных факторов на сердечный выброс, важно иметь в виду, что увеличения сердечного выброса у здорового человека можно ожидать скорее в ответ на повышение преднагрузки, которая в свою очередь связана с объемом крови, определяющим наполнение полостей сердца, а не в ответ на усиление сократимости миокарда или повышение постнагрузки. Повышение постнагрузки у здорового человека препятствует увеличению сердечного выброса. Не следует ожидать и повышения сократимости миокарда при введении препаратов типа сердечных гликозидов или уменьшения постнагрузки после введения нитропруссида (Nitroprusside) и как следствие увеличения сердечного выброса у здоровых лиц. С другой стороны, у больных с застойной сердечной недостаточностью вследствие угнетения сократимости миокарда сердечный выброс обычно снижен. Именно у них можно ожидать его нормализации с помощью лекарственных препаратов, обладающих положительным инотропным действием или снижающих постнагрузку. Так и происходит в повседневной клинической практике.
Видео: Разница между показателями систолического и диастолического давлений
Рис. 181-6. Диаграмма, иллюстрирующая влияние конечно-диастолического объема желудочка (КДОЖ) на сократимость миокарда при его растяжении. По оси абсцисс отложены величины КДОЖ и соответствующие им величины давления наполнения, при которых развиваются одышка и отек легких. По оси ординат отложены величины работы желудочков, соответствующие пребыванию больного в состоянии покоя, при ходьбе и выполнении максимальной физической нагрузки. Пунктирные линии представляют собой нисходящие колена кривых желудочковой работы, которые редко используются в практической деятельности, но отражают уровень работы желудочков, соответствующий максимальному повышению КДОЖ. Для дальнейших объяснений — см. текст, (из: Braunwald et al„ 1976.)
Физическая нагрузка. Гемодинамические изменения, возникающие при физической нагрузке в вертикальном положении, обычно довольно сложны (рис. 181-6) и включают гипервентиляцию легких, усиление насосной функции мышц, участвующих в выполнении физической работы, и веноконстрикцию. Все это приводит к возрастанию венозного возврата крови к сердцу, а следовательно, наполнения желудочков кровью и преднагрузки. Одновременно с этим активируется симпатическая стимуляция миокарда, повышается концентрация циркулирующих катехоламинов, развивается тахикардия. Все эти изменения в совокупности усиливают сократимость миокарда (см. рис. 181-6, кривые 1 и 2) и вызывают увеличение ударного объема, не затрагивая или даже снижая конечно-диастолические величины давления и объема (см. рис. 181-6. точки А и Б). Для предотвращения выраженного подъема артериального давления, как правило, сопровождающего увеличение сердечного выброса и неизбежного в подобной ситуации, в работающих мышцах развивается вазодилатация. Вследствие этого во время физической нагрузки можно наблюдать значительное повышение сердечного выброса и лишь умеренное повышение артериального давления по сравнению с состоянием покоя.
Развитие сердечной недостаточности
Несмотря на то что клиническая диагностика синдрома сердечной недостаточности, характеризуемого хорошо известными симптомами, не вызывает больших сложностей, тонкие физиологические и биохимические сдвиги, происходящие в этом случае, значительно труднее поддаются изучению. Тем не менее, с клинической точки зрения, сердечную недостаточность можно рассматривать как состояние, при котором нарушенная функция миокарда служит причиной неспособности сердца нагнетать кровь в сосудистое русло в объеме и со скоростью, соизмеримыми с метаболическими потребностями тканей, или же эти потребности обеспечиваются только благодаря патологически высокому давлению наполнения полостей сердца. При сердечной недостаточности страдать может как систола, так и диастола (рис. 181-7). При так называемой систолической, или классической, сердечной недостаточности нарушение сократимости приводит к ослаблению сокращения миокарда в систолу, а следовательно, к снижению ударного объема и расширению полостей сердца. Идиопатическая дилатационная кардиомиопатия является типичным примером систолической сердечной недостаточности. В случае диастолической сердечной недостаточности происходит неполное расслабление желудочков, приводящих к повышению диастолического давления в желудочке при нормальном его объеме. Невозможность полного расслабления может быть функциональной, как, например, при транзиторной ишемии, или вызванной потерей эластичности и утолщением стенок желудочка. Чаще всего диастолическая недостаточность возникает при вторичных рестриктивных кардиомиопатиях, при таких инфильтративных поражениях, как амилоидоз или гемохроматоз (гл. 192). У многих больных с гипертрофией и дилатацией миокарда систолическая и диастолическая формы сердечной недостаточности сосуществуют. В этом случае нарушается как процесс опорожнения, так и процесс наполнения желудочков. Даже при дилатации полостей сердца сдвиг кривой «давление — объем» позволяет достичь повышения диастолического давления в желудочке при любом его объеме.
Характерным признаком систолической сердечной недостаточности служит нарушение сократимости миокарда. Однако этот дефект может быть следствием как первичного поражения сердечной мышцы, например при кардиомиопатии, так и вторичного повреждения ее вследствие длительной чрезмерной нагрузки, например при артериальной гипертензии или клапанном пороке сердца, а также при многих вариантах врожденных заболеваний сердца. При ишемической болезни сердца систолическая сердечная недостаточность представляет собой результат уменьшения количества нормально сокращающихся клеток. Очень важно дифференцировать сердечную недостаточность от циркуляторной недостаточности, при которой функция миокарда страдает вторично, например при тампонаде сердца или геморрагическом шоке- от состояний, характеризующихся застоем кровообращения вследствие патологической задержки солей и жидкости в организме (в подобных случаях серьезных расстройств функции сердца не наблюдают)- от состояний, при которых нормально сокращающийся миокард внезапно сталкивается с нагрузкой, превосходящей его возможности, например вследствие обострения артериальной гипертензии или разрыва створки клапана при инфекционном эндокардите.
Собственную сократимость миокарда изучали в эксперименте на изолированном сердце, взятом у здоровых животных, у животных с гипертрофией миокарда и у животных с сердечной недостаточностью. Как при гипертрофии миокарда желудочков, так и при сердечной недостаточности было выявлено снижение максимального изометрического напряжения миокарда и скорости укорочения волокон миокарда до субнормальных значений. Эти изменения были более выражены у животных, страдавших сердечной недостаточностью, чем у животных с изолированной гипертрофией миокарда. Однако гипертрофия миокарда желудочков даже при отсутствии сердечной недостаточности также сопровождалась угнетением сократимости единицы массы миокарда, несмотря на то, что абсолютное увеличение общей мышечной массы обеспечивало поддержание функции сердца в целом. Исследование сосочковых мышц, взятых из левого желудочка больных с сердечной недостаточностью, также продемонстрировало невозможность достижения ими максимального активного напряжения. Электронно-микроскопическое исследование сосочковых мышц кошек, страдавших сердечной недостаточностью, в состоянии, соответствовавшем верхней точке кривой «длина — активное напряжение», показало, что длина саркомера в среднем составляла 2,2 мкм. Таким образом, нарушение сократимости, видимо, не было связано с изменением взаимоотношений филаментов внутри саркомера.
Рис. 181-7. Нарушение работы сердца при сердечной недостаточности. Взаимоотношения между конечно-диастолическим объемом левого желудочка и 1) конечно-диастолическим давлением (верхняя часть), что отражает податливость левого желудочка, т. е. его диастолические свойства- 2) ударной работой левого желудочка (нижняя часть), что характеризует кривую систолической функции желудочка. Здоровый левый желудочек (слева) создает конечно-диастолическое давление в 30 мм рт. ст. (уровень, выше которого развивается отек легких), когда его конечно-диастолический объем достигает 200 мл. Систолическая функция левого желудочка при его концентрической гипертрофии (в центре) остается в нормальных пределах, поскольку взаимосвязь конечно-диастолического объема левого желудочка и его ударной работы не меняется. Однако при этом имеет место «диастолическая недостаточность», характеризующаяся тем, что конечно-диастолическое давление, при котором начинается отек легких (30 мм рт. ст.), возникает при меньших значениях конечно-диастолического объема (130 мл). При дилатации желудочка (справа) развивается «систолическая недостаточность», характеризующаяся тем, что максимальная ударная работа и ударный объем понижены при любом значении конечно-диастолического объема. При этом у левого желудочка повышается диастолическая податливость, т. е. растяжимость, при значительно более высоких, чем требуется для развития отека легких, величинах конечно-диастолического объема (280 мл). (С разрешения из: R. Gorlin—Prim. Cardiol., 1984, 6, 84.)
При нарушении сократимости миокарда желудочек может продолжать выбрасывать в сосудистое русло нормальное или почти нормальное количество крови, несмотря на существенное угнетение его функции, за счет увеличения конечно-диастолического объема, т. е. благодаря действию механизма Франка — Стерлинга. Как отмечалось выше, увеличение исходного объема желудочка сопровождается растяжением саркомера. В результате этого увеличивается количество точек взаимодействия нитей актина и миозина и/или повышается их чувствительность к ионам кальция. Более того, гипертрофию желудочков можно рассматривать как процесс формирования дополнительных контрактильных единиц, что представляет собой важный механизм компенсации в условиях угнетения собственной сократимости миокарда.
Оценка сердечной деятельности. Для оценки степени нарушения функции сердца у человека существует несколько методов. Даже в состоянии покоя сердечный выброс и ударный объем могут быть снижены, но нередко эти показатели остаются в пределах нормы. Более чувствительным показателем является фракция выброса, т. е. отношение ударного объема к конечно-диастолическому объему, определяемое в процессе стандартной рентгенологической или радиоизотопной ангиографии (гл. 179 и 180). При сердечной недостаточности величина фракции выброса, как правило, снижается, даже если ударный объем остается в пределах нормы. Недостатком показателей фракции выброса и сердечного выброса при оценке функции сердца можно рассматривать тот факт, что они существенно зависят от величин желудочковой пред- и постнагрузки. Таким образом, угнетение фракции выброса и снижение сердечного выброса можно наблюдать у больных с сохраненной функцией желудочков, но при сниженной преднагрузке, как, например, в случае гиперволемии, или при резком повышении артериального давления. Регистрация циркуляторных изменений во время стрессовых ситуаций, например физической нагрузке или увеличении постнагрузки, представляет собой еще более чувствительный метод выявления нарушенной функции желудочков. Для этого функцию левого желудочка оценивают по величинам конечно-диастолического давления в левом желудочке, сердечного выброса и общего потребления кислорода организмом в покое и при нагрузке. У здорового человека сердечный выброс увеличивается не менее чем на 500 мл/мин при возрастании потребления кислорода на 100 мл/мин. В покое конечно-диастолическое давление в левом желудочке не превышает 12 мм рт. ст. При физической нагрузке оно может остаться на прежнем уровне, немного повыситься или снизиться- ударный объем обычно повышается. С другой стороны, нарушение функции левого желудочка характеризуется возрастанием конечно-диастолического давления при физической нагрузке более 12 мм рт. ст., что сопровождается отсутствием увеличения или даже снижением ударного объема и субнормальным повышением сердечного выброса в ответ на усиление минутного потребления кислорода тканями. Было установлено, что между нормальным ответом на физическую нагрузку и реакцией на нее больного с левожелудочковой недостаточностью имеется целый ряд промежуточных ступеней.
Ценность изучения функции левого желудочка в условиях стресса подтверждается тем фактом, что величины конечно-диастолического давления в левом желудочке, сердечного индекса и ударной работы желудочков в покое могут не различаться у больных с угнетением желудочковой функции и у здоровых лиц. Исследование реакции на физическую нагрузку позволяет не только выявить нарушение функции миокарда, но и количественно оценить ее выраженность.
Функциональная активность левого желудочка у человека может быть охарактеризована также с помощью данных о мгновенных взаимоотношениях силы и скорости сокращения миокарда и о степени укорочения его волокон во время каждого отдельного сердечного цикла. Ангиокардиографические и эхокардиографические исследования (гл. 179) и анализ скорости изменения внутрижелудочкового давления (dp/dt) при одновременной регистрации давления во время изоволюметрического сокращения показали, что у больных с сердечной недостаточностью наблюдается угнетение процессов укорочения и напряжения мышечных волокон. У лиц с ишемической болезнью сердца эти нарушения чаще имеют определенную локализацию и реже бывают диффузными. Так, они нередко проявляются регионарными нарушениями движения стенки желудочка при нормальной общей функции левого желудочка. Соотношение конечно-систолических значений давления и объема является чрезвычайно ценным показателем, отражающим состояние желудочковой функции, поскольку он учитывает как пред-, так и постнагрузку. Большую помощь при клинической оценке функции миокарда оказывают неинвазивные методы получения изображения, в частности эхокардиография и радиоизотопная ангиография (гл. 179).
Метаболизм миокарда при сердечной недостаточности. Наиболее часто встречающиеся формы сердечной недостаточности с низким сердечным выбросом, вызванные атеросклерозом, артериальной гипертензией, поражением клапанов и врожденными заболеваниями, характеризуются абсолютным или относительным уменьшением полезной внешней работы сердца. Механизмы, лежащие в основе этого уменьшения, в настоящее время активно изучаются.
Были получены объективные доказательства того, что при сердечной недостаточности нарушается сопряжение процессов возбуждения и сокращения, в результате чего снижается доставка ионов кальция к контрактильным элементам, что и обусловливает ухудшение сердечной деятельности. Молекулярные изменения, лежащие в основе этих дефектов, а также их локализация в клетке (сарколемма, Т-канальцы и/или саркоплазматическая сеть) требуют уточнения.
Большое внимание также было уделено вопросу о том, является ли сердечная недостаточность следствием нарушения продукции, консервации или утилизации энергии. Однако лишь в отдельных случаях, как, например, при бери-бери, сердечная недостаточность сопровождается отчетливыми расстройствами продукции энергии в миокарде. Основные пути, по которым пируват входит в цикл лимонной кислоты, и некоторые реакции внутри самого цикла зависят от наличия адекватного количества тиамина (гл. 76). Недостаток тиамина приводит к снижению утилизации пировиноградной кислоты тканями сердца и к патологическому снижению коэффициента экстракции пирувата у исходно здоровых собак и людей.
На втором этапе миокардиального метаболизма, этапе консервации энергии, энергия окисления субстрата трансформируется в энергию концевых связей креатинфосфата (КФ) и АТФ, непосредственных источников химической энергии, потребляемой сердечной мышцей. Этот процесс, известный как окислительное фосфорилирование, происходит в митохондриях. Эффективность механизма сопряжения продукции и консервации энергии можно исследовать, измеряя запасы АТФ и КФ в миокарде. При этом консервацию энергии можно оценивать по величине отношения Ф/К, т. е. отношения количества продуцируемого высокоэнергетического фосфата к количеству потребляемого митохондриями кислорода, а также по степени сопряжения транспорта электронов и образования высокоэнергетических фосфатов. Существует много противоречивых сведений о значении этой фазы метаболизма при сердечной недостаточности. В настоящее время есть данные о том, что тяжелое нарушение сердечной деятельности может иметь место и без повреждения функции митохондрий или сокращения запасов высокоэнергетических фосфатов. Тем не менее при некоторых формах экспериментальной сердечной недостаточности поломка этих процессов действительно присутствует.
Отсутствие убедительных доказательств расстройства образования или консервации энергии в пораженном миокарде, естественно, заставило обратить внимание на возможность нарушения утилизации энергии при развитии сердечной недостаточности. Патологическое высвобождение энергии могло бы иметь место, если бы контрактильные протеины были повреждены. При некоторых формах экспериментальной сердечной недостаточности, в частности вызванной механической перегрузкой, действительно был выделен изоэнзим миокарда, характеризующийся иммунологическими и электрофоретическими свойствами и низкой кальцийзависимой АТФазной активностью. Возможно, что эта низкая активность и лежит в основе патологического распада АТФ, процесса, ведущего к сокращению сердечной мышцы.
Адренергическая нервная система и сердечная недостаточность. Ввиду чрезвычайной важности адренергической нервной системы для стимуляции сократимости здорового миокарда ее активность изучали у больных с застойной сердечной недостаточностью. Активность этой системы в покое и при физической нагрузке оценивали по концентрации норадреналина в артериальной крови. У здоровых лиц при физической нагрузке происходит относительно небольшое повышение уровней норадреналина. У больных же с сердечной недостаточностью уровни циркулирующего норадреналина даже в покое могут быть заметно повышены. Причем прогноз заболевания тем хуже, чем выше концентрации нейротрансмиттера. Кроме того, у больных с застойной сердечной недостаточностью при физической нагрузке содержание норадреналина в крови повышается в значительно большей степени, чем у здоровых людей. Это также объясняют существенно более высокой активностью адренергической нервной системы v данной группы больных, которая сохраняется и во время физической нагрузки.
Важность повышения активности адренергической нервной системы для поддержания сократимости желудочков в условиях угнетения функции миокарда при застойной сердечной недостаточности подтверждается данными о том, что блокада ??адренорецепторов может усугубить нарушение насосной функции. Таким образом, адренергическая нервная система играет важную модулирующую роль в поддержании кровообращения у больных с застойной сердечной недостаточностью. В связи с этим следует с большой осторожностью использовать антиадренергические препараты, в частности ??адреноблокаторы, при лечении больных с ограниченным резервом миокарда (гл. 182).
В то же. время концентрация и содержание норадреналина в тканях сердца у больных с сердечной недостаточностью понижены, составляя в ряде случаев лишь 10 % от нормальных значений. Механизм, лежащий в основе этого явления, полностью неизвестен. Однако считают, что длительное сохранение высокого тонуса симпатических нервов сердца играет решающую роль, вмешиваясь определенным образом в биосинтез норадреналина. Кроме того, имеются доказательства, что при хронической тяжелой сердечной недостаточности плотность ??адренорецепторов в сердце и концентрация циклической АМФ в миокарде существенно понижены.
Учитывая мощный положительный инотропный эффект норадреналина, выделяемого этими нервами, адренергическую нервную систему можно рассматривать в качестве важного потенциального источника поддержания функции страдающего миокарда. Однако увеличение частоты и силы сердечных сокращений у животных с экспериментальной сердечной недостаточностью и истощением запасов норадреналина в сердце практически отсутствует или выражено минимально при стимуляции симпатических нервов сердца. Таким образом, складывается впечатление, что в тех случаях, когда застойная сердечная недостаточность сопровождается истощением запасов норадреналина в сердце, количество его, выделяемое симпатическими нервными окончаниями в сердце, мало по отношению к той импульсации, которая передается по этим нервам. Более того, даже выделившийся норадреналин не может оказать на миокард должного воздействия вследствие угнетения эффективного адренергического механизма миокарда.
В то же время наличие запасов норадреналина в миокарде не является обязательным условием поддержания его сократимости. Однако, поскольку уменьшение запасов норадреналина в миокарде при сердечной недостаточности сочетается со снижением выброса этого нейротрансмиттера, можно предположить, что указанное истощение последнего лежит в основе утраты такой необходимой адренергической поддержки нарушенной функции миокарда. На более поздних стадиях сердечной недостаточности, когда уровни циркулирующих катехоламинов повышены, а содержание норадреналина в миокарде понижено, миокард становится во многом зависимым от более генерализованной адренергической стимуляции, исходящей из внекардиальных источников, главным образом из мозгового вещества надпочечников. Данный факт объясняет ухудшение деятельности сердца, возникающее у больных с сердечной недостаточностью, получающих ??адреноблокаторы. Это генерализованная адренергическая стимуляция, являющаяся результатом циркуляции большого количества катехоламинов в крови, может, однако, оказывать и неблагоприятные побочные эффекты, связанные с повышением сосудистого сопротивления, а следовательно, и постнагрузки, которая значительно превышает оптимальные значения.
Заключая анализ механизмов сердечной недостаточности, следует отметить, что основные нарушения кроются в угнетении взаимоотношений силы и скорости сердечных сокращений и сдвиге кривой «длина — активное напряжение сердечных волокон». Это отражает уменьшение сократимости миокарда (см. рис. 181-6, кривые 1, 3). Во многих случаях сердечный выброс и внешняя работа желудочков у этих больных в покое сохраняются в пределах нормы, что, однако, обеспечивается только лишь за счет увеличения конечно-диастолической длины мышечных волокон и повышения конечно-диастолического объема желудочка, т. е. за счет механизма Франка — Старлинга (см. рис. 181-6, точки А—Г). Повышение преднагрузки левого желудочка сопровождается аналогичными изменениями давления в легочных капиллярах, вызывая одышку у больных с сердечной нeдостаточностью. Сократительная способность миокарда вследствие повышенной симпатической активности при физической нагрузке у больных с тяжелой сердечной недостаточностью не возрастает или возрастает в незначительной степени, что обусловлено истощением запасов норадреналина в миокарде (см. рис. 181-6, кривые 3 и 3`). Механизмы, поддерживающие наполнение желудочков кровью во время физической нагрузки у здоровых лиц, приводят к дальнейшему ухудшению функции миокарда при его недостаточности, в результате уплощается кривая «длина — активное напряжение волокон». И несмотря на то, что левый желудочек после их включения может несколько улучшить свою деятельность, этот эффект достигается исключительно благодаря чрезмерному повышению конечно-диастолического объема и давления левого желудочка, а следовательно, и давления в легочных капиллярах. Последний фактор ведет к усилению одышки, которая в свою очередь играет важную роль в ограничении интенсивности выполняемой пациентом физической нагрузки. Левожелудочковая недостаточность становится необратимой, когда кривая «длина — активное напряжение мышечных волокон» угнетается настолько, что сердечная деятельность не способна удовлетворить метаболические потребности периферических тканей в покое (см. рис. 181-6, кривая 4), и/или конечно-диастолическое давление в левом желудочке и давление в легочных капиллярах повышается в такой степени, что приводит к развитию отека легких (см. рис. 181-6, точка Д).
Поделиться в соцсетях:
Похожие