Возникновение нарушений ритма сердца
В этом разделе мы рассмотрим, каким образом место возникновения доминирующего водителя ритма смещается от синусового узла к некоему эктопическому очагу, вызывая тем самым эктопическое возбуждение и тахикардию. Изменение места возникновения импульса часто является следствием изменений электрической активности сердечных клеток при заболевании. Хотя нарушения ритма возникают и в клинически нормальном сердце, подобная аритмия может быть следствием аналогичных изменений клеточной электрофизиологии, которые захватывают лишь ограниченную область сердца и поэтому слишком малы, чтобы их можно было выявить клиническими методами.Нарушения ритма, вызванные циркуляцией импульсов
В сердце, стимулируемом синусовым ритмом, распространяющийся импульс исчезает сразу после последовательной активации предсердий и желудочков, так как он окружен рефрактерной тканью, которая только что была возбуждена. Затем сердце должно ждать поступления нового импульса, возникающего в синусовом узле при следующей активации. Феномен циркуляции наблюдается в том случае, когда распространяющийся импульс не исчезает после полной активации сердца, а сохраняется, вновь возбуждая его после окончания рефрактерного периода [71]. Для того чтобы это произошло, импульс должен оставаться в пределах сердца, пока в сердечных волокнах не восстановится возбудимость и он сможет реактивировать их.
Эффективный рефрактерный период в сердечных клетках продолжителен — от 150 мс (в предсердиях) до 300—500 мс (в специализированной проводящей системе желудочков) [3]. Поэтому импульс, предназначенный для циркуляции (или повторного возбуждения), должен сохраняться по крайней мере в течение этого времени до окончания рефрактерного периода. Однако в ожидании его окончания импульс не может оставаться на одном месте, а должен продолжать свое продвижение по пути, функционально изолированному от остальных областей сердца. Такой путь проведения должен обеспечивать возможность возврата к ранее возбужденной области- он должен быть достаточно длинным, чтобы импульс распространялся по нему в течение всего рефрактерного периода. В норме импульс проводится со скоростью от 0,5 до 5 м/с по всем тканям сердца, за исключением волокон синусового и атриовентрикулярного узлов. Если бы он продвигался с такой скоростью в течение всего рефрактерного периода, он должен был бы пройти путь длиной от 7,5 см до 2,5 м. Как отмечают Сгаnefield и Hoffman, существование столь длинного пути, пусть даже замкнутого, но находящегося в функциональной изоляции от остальных тканей сердца, никогда не представлялось возможным [72].
Естественно, распространение с нормальной скоростью не является единственным способом сохранения циркулирующего импульса во время рефрактерного периода: снижение скорости проведения устраняет необходимость такого длинного проводящего пути. Например, если проведение замедлено (до 0,02 м/с), импульс пройдет всего 6 мм в течение рефрактерного периода длительностью 300 мс [72]. В предыдущем разделе говорилось, каким образом заболевание сердца может обусловить столь медленное проведение импульса, а пути такой длины легко найти в сердце.
Изменения длительности рефрактерного периода также могут облегчить циркуляцию. Например, уменьшение эффективного рефрактерного периода, обычно наблюдаемое при ускорении реполяризации потенциала действия, сокращает время, в течение которого импульс должен проводиться по функционально изолированному пути в ожидании восстановления возбудимости остальных областей сердца.
Циркуляция, обусловленная медленным проведением и однонаправленным блоком в миокардиальных волокнах с низким потенциалом покоя и невысокой скоростью нарастания потенциала действия
Возникновение циркуляции импульса зависит от наличия медленного проведения и однонаправленного блока проведения. Основные принципы возникновения циркуляции иллюстрирует рис. 3.13, воспроизводящий в несколько измененном виде схему из работы Mines, опубликованной в 1914 г. [71]- данные были получены им при исследовании изолированных колец сердечных тканей. Аналогичные исследования, которые также внесли свой вклад в современную концепцию циркулирующего возбуждения, были осуществлены Мауег [73] на кольцах, полученных из ткани колокола медузы. Как показано на рис. 3.13, если кольцо возбудимой ткани стимулируется в одной точке, то из этой точки исходят две волны возбуждения, которые распространяются в противоположных направлениях по кольцу- при этом возбуждение возникает лишь однократно, так как волны сталкиваются и затухают. Однако при временном сдавлении ткани вблизи места стимуляции волна возбуждения распространяется лишь в одном направлении вдоль кольца, ибо область сдавления предотвращает проведение волны в другом направлении. Волна, распространяющаяся в одном направлении, возвращается к точке стимуляции (на этот раз давление на ткань не производится), а затем снова проходит по кольцу. Импульс способен проходить по кольцу бесконечное число раз, так как каждый раз при его возвращении к исходной точке возбудимость ткани в этой части кольца восстанавливается [71, 73].
Рис. 3.13. Циркуляция импульсов в кольце возбудимой ткани (по Мауег и Mines).
А — стимуляция кольца в области, отмеченной черной точкой- импульсы, распространяясь от этой точки в обоих направлениях, сталкиваются- циркуляции не происходит. Б — при стимуляции в той же точке сдавливается заштрихованный участок- импульс распространяется по кольцу только в одном направлении, так как его движение в противоположном направлении блокируется в области сдавления- сразу же после стимуляции сжатие прекращалось. В — однонаправленно циркулирующий импульс возвращается к исходной точке и затем продолжает свое движение по кольцу.
Аналогичным образом циркуляция может возникать в замкнутых проводящих путях, образованных пучками миокардиальных волокон предсердий, желудочков или волокон Пуркинье. Например, анатомическое строение специализированной проводящей системы желудочков обеспечивает проведение по путям, функционально пригодным для циркуляции. Пучки сообщающихся волокон Пуркинье окружены соединительной тканью, отделяющей их от желудочков миокарда. В периферических областях проводящей системы такие пучки обычно имеют множество ответвлений- в местах соприкосновения ветвей пучка с миокардом желудочков часто формируются анатомические петли, образованные пучками волокон Пуркинье и мышечными волокнами (рис. 3.14). В периферической проводящей системе желудочков существуют также замкнутые пути, образованные исключительно пучками волокон Пуркинье.
Потенциалы действия волокон Пуркинье в норме развиваются по типу быстрого ответа со скоростью проведения от 1 до 5 м/с. В нормальных условиях быстро проводящееся возбуждение синусового происхождения охватывает все пучковые волокна Пуркинье дистальной петли и достигает миокарда желудочков, где импульсы сталкиваются и затухают из-за рефрактерности окружающей ткани (рис. 3.15). Для того чтобы в дистальной части специализированной проводящей системы желудочков возникла циркуляция, проведение должно быть замедленным- .кроме того, необходимо наличие участка, имеющего однонаправленный блок и стратегически важное расположение. Проведение может быть замедленным, если петля располагается в пораженной области сердца. В этом случае скорость деполяризации в нулевую фазу и овершут потенциала действия волокон Пуркинье в петле могут быть снижены, возможно, вследствие уменьшения потенциала покоя. Угнетение потенциала покоя и нарастание потенциала действия на пораженных участках редко бывают равномерными- в областях с выраженным снижением потенциала действия может возникнуть однонаправленный блок.
Механизм, с помощью которого замедленное проведение и однонаправленный блок могут привести к развитию циркуляции, показан в левой`части рис. 3.14 [74, 75]. В дистальной петле, образованной пучками волокон Пуркинье и миокардом желудочков, участок с однонаправленным блоком находится вблизи основания ветви Б- импульс не может пройти через этот участок в антероградном направлении, но проводится в ретроградном направлении. Предполагается, что в остальной части петли проведение замедлено. Импульс из синусового узла, проводящийся в петлю через основной пучок волокон Пуркинье, блокируется вблизи ответвления Б и может войти только в ветвь А, по которой он медленно проходит в миокард желудочков, и лишь затем он может возбудить ветвь Б на ее миокардиальном конце. Эта ветвь первоначально не возбуждалась из-за однонаправленного блока у ее основания, поэтому импульс может проводиться по ней в ретроградном направлении и через область однонаправленного блока войти в основной пучок, по которому он проходит в петлю (см. рис. 3.14).
Циркулирующий импульс будет, конечно, блокирован, если он вернется к основному пучку, когда волокна в этой области находятся в состоянии эффективной рефрактерности (см. рис. 3.15). Следовательно, необходимо медленное проведение потенциалов действия по петле. Область с однонаправленным блоком необходима для предохранения какой-то части петли от антероградного проникновения импульса, что обеспечивает возбудимость возвратного пути для циркулирующего импульса.
Когда циркулирующий импульс возвращается к основному пучку, он может пройти по всей проводящей системе и повторно активировать желудочки, вызвав их преждевременное сокращение.
Рис. 3.14. Возможные механизмы циркуляции импульсов при медленном проведении и однонаправленном блоке.
Слева — основной пучок (ОП) волокон Пуркинье, разделяющийся на две ветви (А и Б) перед входом в миокард желудочков (МЖ). В ветви Б располагается выраженно угнетенная область (заштриховано), в которой происходит однонаправленное блокирование проведения (в антеградном направлении). Проведение в остальной части замкнутого пути замедлено из-за низкого потенциала покоя в волокнах Пуркинье- следовательно, нарастание их потенциала действия также замедлено. Стрелками показана последовательность активации замкнутого пути идущим импульсом: стрелка под цифрой I представляет импульс синусового происхождения, входящий в петлю- стрелка под цифрой II — циркулирующий импульс, выходящий из петли. Более подробное описание возникновения циркуляции дано в тексте. Ниже показаны потенциалы действия, зарегистрированные в ОП и ветвях А и Б, а также пример возможной электрокардиограммы. Потенциал действия 1 на ОП-кривой зарегистрирован при вхождении в замкнутую цепь. Потенциалы действия на А и Б зарегистрированы при прохождении импульса по цепи. Потенциал действия II на ОП-кривой возникает при повторном возбуждении основного пучка. Импульс I вызывает желудочковую деполяризацию 1 на электрокардиограмме, а импульс II — желудочковую экстрасистолу (желудочковая деполяризация II). Справа на верхнем фрагменте рисунка показано возникновение циркуляции в единственном пучке мышечных волокон или волокон Пуркинье. Схематически изображены два соседних волокна в пучке- возбуждение во всей заштрихованной области угнетено, но угнетение участка верхнего волокна (темная штриховка) настолько выражено, что там возникает однонаправленный блок проведения. Стрелки показывают последовательность активации пучка: стрелки под цифрой I представляют импульс, входящий в пучок, а стрелки под цифрой II — циркулирующий импульс, который возвращается и вновь возбуждает левую часть пучка (см. текст). Внизу показаны потенциалы действия, зарегистрированные в точках а, б и в нижнего волокна: потенциал действия I зарегистрирован при прохождении импульса слева направо, а потенциал действия II — при возвращении импульса к исходной точке. Нижняя кривая показывает, как эти события отражаются на электрокардиограмме.
Рис. 3.15. Основной пучок (ОП) волокон Пуркинье в дистальной части желудочковой проводящей системы, который разделяется на две ветви (А и Б) перед вхождением в миокард желудочков (МЖ) и образованием петли.
На фрагменте I показана последовательность активации в нормальных условиях- импульс синусового происхождения входит в основной пучок, ведущий к петле, где импульсы сталкиваются и исчезают. Фрагмент II — последовательность активации при наличии области с однонаправленным блоком проведения (заштрихованный участок ветви Б)- проведение возбуждения блокируется в антеградном направлении (от Б к МЖ), но не в ретроградном направлении (от МЖ к Б). В остальной части петли скорость проведения нормальная, поскольку здесь отсутствует угнетение- следовательно, импульс быстро проходит петлю и возвращается к ОП прежде чем восстановится его возбудимость, а затем блокируется в рефрактерной ткани. Фрагмент III — возможная последовательность активации при замедленном прохождении петли- но участок однонаправленного блока здесь отсутствует. Следовательно, импульс медленно проходит от ОП по обеим ветвям. Однако МЖ первым активизируется импульсами, быстро поступающими из других областей, где проведение не угнетено. Напротив, обратного возбудимого пути, по которому могла бы осуществляться циркуляция, не существует [16].
Он может также вновь проникнуть в пучок волокон Пуркинье, через который он первоначально возбудил миокард желудочков (ветвь А на рис. 3.14), и снова пройти по тому же пути циркуляции. Это может привести к непрерывной циркуляции импульса по петле, или к «круговому движению», весьма напоминающему движение волны возбуждения по кольцу ткани, которое наблюдалось Mines и Мауег. Однако в только что описанной петле непрерывная циркуляция обусловит повторяющееся возбуждение желудочков.
Если при нормальной активации сердца проведение в петле волокон Пуркинье и рабочего миокарда желудочков замедлено недостаточно для обеспечения циркуляции или если отсутствует участок, имеющий стратегически важное расположение и однонаправленный блок, то циркуляция может быть вызвана преждевременной активацией. Основной импульс может распространяться по пучкам волокон .Пуркинье и миокарду желудочков по любому из путей, показанных на рис. 3.15. Если эти волокна Пуркинье затем вновь преждевременно активировать, раньше чем они полностью восстановят свою возбудимость, то вполне вероятно, что преждевременный импульс будет проводиться даже медленнее, чем основной. Преждевременная активация может также привести к возникновению однонаправленного блока, так как частично рефрактерная ткань недостаточно безопасна для проведения возбуждения. Следовательно, преждевременная активация способна вызвать циркуляцию, схематически показанную на рис. 3.14.
Хотя при описании механизма циркуляции по замкнутому пути с угнетенным проведением мы использовали в качестве примера периферические волокна Пуркинье, возникновение циркуляции с помощью аналогичного механизма может наблюдаться и в других областях сердца. Например, при ревматическом поражении предсердий или инфаркте миокарда желудочков, помимо угнетения нарастания потенциала действия и снижения потенциала покоя, могут обнаруживаться скрытые области невозбудимой ткани [52, 55]- проведение по этим областям может, таким образом, осуществляться по кругу, как описано выше для системы периферических волокон Пуркинье и схематически показано на рис. 3.14.
Однако наличие крупных анатомических петель не является необходимым условием для возникновения циркуляции- циркуляция, вызванная медленным проведением и однонаправленным блоком, может наблюдаться и в неветвящихся пучках мышечных волокон, к которым применимы те же основные принципы, что обсуждались ранее для циркуляции в дискретных петлях ткани [74—76]. Механизм циркуляции в неветвящихся пучках волокон Пуркинье или мышечных волокон, получивший название «отражение», показан в правой части рис. 3.14. Отдельные волокна в таких структурах располагаются преимущественно параллельно друг другу с боковым соединением на некоторых участках. Пример неравномерного снижения мембранного потенциала вследствие заболевания в неветвящейся структуре показан в верхней части рисунка. Предполагается, что клетки в центральной части верхнего волокна имеют меньший потенциал покоя, чем клетки нижнего волокна, так что в верхнем волокне возникает однонаправленный блок, тогда как в нижнем волокне — лишь замедленное проведение. Следовательно, импульс, проходящий через неветвящийся пучок, будет блокироваться вблизи средней части верхнего волокна, но сможет медленно проводиться по нижнему волокну. Только после прохождения центрального участка импульс сможет латерально пройти в верхнее волокно и распространяться как в антероградном, так и в ретроградном направлении (см. рис. 3.14). На этом пути он может циркулировать и повторно возбуждать неветвящуюся структуру (ретроградно), а следовательно, и другие части сердца (также повторно).
Недавно был описан другой механизм, способный вызвать феномен «отражения» [77]. Вследствие снижения потенциала покоя медленное проведение наблюдается не во всем пучке, как это показано на рис. 3.14, Б. Напротив, отмечается задержанная активация части пучка в результате электротонического возбуждения области, расположенной дистальнее невозбудимого сегмента. Наличие невозбудимого сегмента может быть обусловлено снижением потенциала покоя и последующей инактивацией натриевых каналов. Более подробное описание этого механизма читатель найдет в оригинальной статье [77].
Циркуляция вследствие дисперсии рефрактерности
Циркуляция может наблюдаться и в отсутствие вызванного заболеванием стойкого снижения мембранного потенциала покоя и угнетения деполяризации в нулевую фазу. Однако и в этом случае двумя основными условиями возникновения циркуляции остаются медленное проведение и однонаправленный блок. Оба условия действительны для волокон здорового сердца, если преждевременные импульсы возникают в пределах относительного рефрактерного периода, особенно если рефрактерные периоды соседних групп сердечных волокон существенно различаются. Различия в рефрактерных периодах соседних групп миокардиальных волокон могут усиливаться при заболевании сердца. Ниже приводятся примеры циркуляции, вызванной такой дисперсией рефрактерности.
Рефрактерные периоды клеток нормального АВ-узла значительно варьируют. Группы клеток предсердной части узла (область ПУ), по-видимому, включают по крайней мере две популяции с различными рефрактерными периодами (рис. 3.16) [78]. В соответствующих условиях подобное различие в рефрактерности клеток верхней части узла может привести к образованию функциональных путей циркуляции [78]. В норме синусовый импульс достигает АВ-узла лишь после восстановления возбудимости обеих групп клеток и таким образом проводится через все эти волокна к пучку Гиса. Точно так же (т. е. по всем волокнам АВ-узла) распространяется преждевременный предсердный импульс, возникающий достаточно поздно относительно длительности основного цикла. Однако в случае частого нерегулярного ритма или ранних экстравозбуждений неоднородность рефрактерности волокон верхней части АВ-узла начинает играть значительную роль в проведении. Ранние преждевременные импульсы, проходящие из предсердий в АВ-узел, могут встретить на своем пути участок с однонаправленным блоком, где длительность рефрактерного периода клеток наибольшая- однако возбуждение сможет проводиться, хотя и медленно, по волокнам верхней части узла, эффективный рефрактерный период которых меньше (см. рис. 3.16). Если скорость проведения раннего преждевременного возбуждения по этим волокнам достаточно мала, импульс может ретроградно пройти в зону однонаправленного блока после того, как восстановится возбудимость волокон этой зоны- затем он вернется в предсердия и повторно возбудит их как циркулирующий импульс или «возвратная экстрасистола» (см. рис. 3.16). Антероградный путь проведения с более коротким рефрактерным периодом был назван Mendez и Мое «альфа-путем», а ретроградный путь с более продолжительным рефрактерным периодом — «бета-путем» [78]. Так как нижняя область АВ-узла не является частью пути циркуляции [78], преждевременный предсердный импульс может циркулировать независимо от наличия или отсутствия проведения возбуждения и в антероградном направлении для активации пучка Гиса и желудочков.
Рис. 3.16. Циркуляция предсердного импульса в АВ-узле. Фрагменты А и Б— схематическое изображение АВ-узла, в котором выделены верхняя (ПУ), средняя (У) и нижняя (У Г) области- ПГ обозначает пучок Гиса. Фрагмент А — потенциалы действия, зарегистрированные с двух участков верхней области узла: потенциал действия слева имеет более короткий рефрактерный период, чем потенциал действия справа (отмечено штриховкой). Следовательно, при преждевременном вхождении предсердного импульса в АВ-узел (стрелки) он способен продвигаться только по той части верхней области АВ-узла, где рефрактерный период короче, и блокируется на участке с более длительным рефрактерным периодом. Это также видно на кривых потенциала действия, помещенных вверху.
Фрагмент В — возможное развитие событий: распространяющиеся импульсы (стрелки) могут, вернувшись, возбудить ту область АВ-узла, в которой существует блок антеградного проведения, и таким образом вновь войти в предсердие- потенциал действия, зарегистрированный в цепи возврата, показан выше. Импульс может также проходить по пучку Гиса [16].
Описанные выше механизмы однократной циркуляции предсердных импульсов в АВ-узле могут обусловить и постоянную циркуляцию. Если импульс циркулирует в предсердии, где волокна узла, ранее возбужденные им антероградно, восстановили свою возбудимость, он может снова войти в АВ-узел и проводиться по замкнутой цепи [79—81]. Этот процесс может стать повторяющимся: предсердия будут активироваться всякий раз, когда волна возбуждения пройдет по цепи циркуляции. Таков один из возможных механизмов наджелудочковой тахикардии- более подробно это обсуждается в главе 10.
Различия в рефрактерности соседних групп клеток также могут вызвать циркуляцию в проводящих тканях предсердий [82, 83], желудочков [84] и волокон Пуркинье [85, 86] с нормальными электрофизиологическими характеристиками, причем патологические изменения, усиливающие локальные различия в рефрактерности, естественно, способствуют развитию циркуляции [87]. Как и в приведенном выше примере циркуляции в АВ-узле, здесь для возникновения циркуляции требуется преждевременный импульс. Циркуляция в предсердии, обусловленная механизмом ведущего цикла [83], описана в главе 6. Циркуляция вследствие дисперсии рефрактерности в системе волокон Пуркинье, сохранившихся в зоне инфаркта миокарда, представлена на рис. 3.17. Потенциал действия в этих волокнах чрезвычайно продолжителен, как и рефрактерные периоды (относительный и эффективный) по сравнению с таковыми в волокнах Пуркинье, окруженных участками ткани, не пораженной инфарктом. Кроме того, длительность потенциала действия соседних волокон в зоне инфаркта неодинакова: потенциал действия, как и рефрактерность, в одних волокнах более продолжителен, чем в других. В результате значительной разницы в длительности абсолютного рефрактерного периода клеток соседних участков ранний преждевременный импульс блокируется на участке с наибольшим абсолютным рефрактерным периодом, медленно проводясь тем временем по относительно рефрактерным участкам с менее продолжительным абсолютным рефрактерным периодом (см. рис. 3.17, а). Пока импульс медленно проводится через возбудимую ткань, возбудимость в зоне блока восстанавливается, так что преждевременный импульс в конечном счете возбуждает и эту зону, а затем возвращается к месту своего возникновения как циркулирующая волна. Циркуляция, вызванная таким механизмом, тоже может быть повторяющейся и способна привести к тахикардии.
Рис. 3.17. Механизм циркуляции импульсов вследствие дисперсии рефрактерности в сети субэндокардиальных волокон Пуркинье, покрывающих область обширного инфаркта миокарда. а и б — эндокардиальная поверхность передней папиллярной мышцы левого желудочка (слева) и передней части межжелудочковой перегородки (справа). Более светлые участки на а и б — область инфаркта, покрытая сетью выживших волокон Пуркинье [53]. Потенциалы действия и рефрактерный период в волокнах Пуркинье на разных участках существенно различаются по длительности. Потенциалы действия зарегистрированы в выживших при инфаркте субэндокардиальных волокнах Пуркинье на границе между зоной инфаркта и нормальной тканью (l)f а также в субэндокардиальных волокнах Пуркинье с более продолжительной фазой реполяризации (2 и 3) [S3], а—преждевременный импульс (ПИ) возникает в точке 1 на границе зоны инфаркта и проходит внутри этой зоны (как показано изогнутыми стрелками), где потенциалы действия более продолжительные- при инфракте потенциал действия в точке 3 длительнее, чем в точке 2. Следовательно, преждевременный импульс может возбудить клетки в точке 2, но проведение заблокируется в точке 3. б — дальнейшее развитие событий: ПИ, пройдя через точку 2, активизирует клетки в точке 3 как циркулирующий импульс (ЦП), а затем возвращается к исходной точке (I), которую он также возбуждает как циркулирующий импульс [16].
Преждевременные импульсы, безусловно ответственные за циркуляцию описанных выше типов, могут возникать несколькими путями. Например, они могут появиться спонтанно в синусовом узле или в эктопическом водителе ритма- их можно также вызвать электрической стимуляцией сердца.
Медленное проведение и циркуляция, обусловленные анизотропностью структуры сердечной мышцы
Сердечная мышца анизотропна, т. е. ее анатомические и биофизические характеристики меняются в зависимости от направления, в котором они определяются относительно сердечного синцития [88]. Такая анизотропность, влияющая на проведение сердечного импульса, может иногда стать причиной циркуляции [89, 90]. Скорость проведения импульсов в направлении, перпендикулярном длинной оси предсердных или желудочковых волокон, значительно меньше, чем в направлении, параллельном этой оси. Очень медленное проведение наблюдается даже при нормальных величинах потенциала покоя и нарастания потенциала действия. Медленное проведение обусловлено эффективным осевым сопротивлением (сопротивление току в направлении распространения возбуждения), которое гораздо выше в направлении, перпендикулярном проводящему волокну, чем в параллельном ему направлении [88—90]. Более высокое осевое сопротивление частично связано с меньшим количеством и меньшей длиной вставочных дисков, соединяющих боковые поверхности миокардиальных волокон, по сравнению с таковыми, соединяющими торцевые поверхности. Медленное проведение является одним из компонентов, необходимых для возникновения циркуляции, и может быть одним из факторов, способствующих появлению циркуляции в нормальном миокарде предсердий или желудочков.
Поделиться в соцсетях:
Похожие