lovmedgu.ru

Жизненные процессы в клетке

Жизненный цикл клетки отчетливо демонстрирует, что жизнь клетки распадается на период интеркинеза и митоза. В период интеркинеза активно осуществляются все жизненные процессы, кроме деления. На них прежде всего и остановимся. Основным жизненным процессом клетки является обмен веществ.

На основе его происходит образование специфических веществ, рост, дифференцировка клетки, а также раздражимость, движения и самовоспроизведение клеток. В многоклеточном организме клетка является частью целого. Поэтому морфологические особенности и характер всех жизненных процессов клетки складываются под влиянием организма и окружающей внешней среды. Свое влияние на клетки организм осуществляет главным образом через нервную систему, а также путем воздействия гормонов желез внутренней секреции.

Обмен веществ — это определенный порядок превращения веществ, приводящий к сохранению и самообновлению клетки. В процессе обмена веществ, с одной стороны, в клетку поступают вещества, которые перерабатываются и входят в состав тела клетки, а с другой стороны, из клетки выводятся вещества, являющиеся продуктами распада, то есть клетка и среда обмениваются веществами. Химически обмен веществ выражается в следующих друг за другом в определенном порядке химических реакциях. Строгий порядок в ходе превращения веществ обеспечивается белковыми веществами — ферментами, которые играют роль катализаторов. Ферменты специфичны, то есть они действуют определенным образом лишь на определенные вещества. Под влиянием ферментов данное вещество из всех возможных превращений во много раз быстрее изменяется лишь в одном направлении. Образовавшиеся в результате этого процесса новые вещества изменяются дальше под влиянием уже других, столь же специфичных ферментов и т. д.

Движущее начало обмена веществ —закон единства и борьбы противоположностей. Действительно, обмен веществ определяется двумя противоречивыми и в то же время едиными процессами — ассимиляцией и диссимиляцией. Поступившие из внешней среды вещества перерабатываются клеткой и превращаются в вещества, свойственные данной клетке (ассимиляция). Таким образом, обновляется состав ее цитоплазмы, органелл ядра, образуются трофические включения, вырабатываются секреты, инкреты. Процессы ассимиляции —синтетические, они идут при поглощении энергии. Источником этой энергии являются процессы диссимиляции. В результате их ранее возникшие органические вещества разрушаются, причем освобождается энергия и образуются продукты, одни из которых синтезируются в новые вещества клетки, а другие выводятся из клетки (экскреты). Энергия, освободившаяся в результате диссимиляции, используется при ассимиля-ции. Таким образом, ассимиляция и диссимиляция являются двумя хотя и различными, но тесно связанными друг с другом сторонами обмена веществ.

Характер обмена различен не только у разных животных, но даже и в пределах одного организма в различных органах и тканях. Эта специфичность проявляется в том, что клетки каждого органа способны усваивать лишь определенные вещества, строить из них специфические вещества своего тела и выделять во внешнюю среду тоже вполне определенные вещества. Вместе с обменом веществ совершается и обмен энергии, то есть клетка поглощает из внешней среды энергию в виде тепла, света и, в свою очередь, выделяет лучистую и другие виды энергии.

Обмен веществ слагается из ряда частных процессов. Основные из них:

1) проникновение веществ в клетку-

2) их «переработка» при помощи процессов питания и дыхания (аэробного и анаэробного)-

3) использование продуктов «переработки» для различных синтетических процессов, примером которых может быть синтез белков и образование секрета-

4) выведение продуктов жизнедеятельности из клетки.

В проникновении веществ, равно как и в выведении веществ из клетки, важную роль играет плазмалемма. Оба эти процесса можно рассматривать с физико-химической и морфологической точки зрения. Проницаемость осуществляется благодаря пассивному и активному переносу. Первый происходит благодаря явлениям диффузии и осмоса. Однако в клетку могут поступать вещества вопреки этим законам, что говорит об активности самой клетки и об ее избирательности. Известно, например, что ионы натрия выкачиваются из клетки, если даже их концентрация во внешней среде выше, чем в клетке, а ионы калия, наоборот, нагнетаются в клетку. Это явление описывается под названием «натриево-калиевый насос» и сопровождается затратой энергии. Способность проникать в клетку уменьшается по мере увеличения в молекуле числа гидроксильных групп (ОН) при введении в молекулу аминогруппы (NH2). Органические кислоты проникают легче, чем неорганические. Из щелочей особенно быстро проникает аммиак. Для проницаемости имеет значение и размер молекулы. Проницаемость клетки изменяется в зависимости от реакции, температуры, освещения, от возраста и физиологического состояния самой клетки, причем эти причины могут усилить проницаемость одних веществ и одновременно ослабить проницаемость других.

Морфологическая картина проницаемости веществ из окружающей среды хорошо прослежена и осуществляется путем фагоцитоза phagein — пожирать) и пиноцитоза (pynein —пить). Механизмы того и другого, по-видимому, сходны и различаются лишь количественно. При помощи фагоцитоза захватываются более крупные частицы, а при помощи пиноцитоза — более мелкие и менее плотные. Вначале вещества адсорбируются покрытой мукополисахаридами поверхностью плазмалеммы, затем вместе с нею они погружаются вглубь, причем образуется пузырек, который затем обособляется от плазмалеммы (рис. 19). Переработка проникших веществ осуществляется в ходе процессов, напоминающих пищеварение и завершающихся образованием сравнительно простых веществ. Внутриклеточное пищеварение начинается с того, что фагоцитозные или пиноцитозные пузырьки сливаются с первичными лизосомами, в которых заключены пищеварительные ферменты, причем образуется вторичная лизосома, или пищеварительная вакуоль. В них при помощи ферментов и происходит разложение веществ на более простые. В этом процессе принимают участие не только лизосомы, но и другие компоненты клетки. Так, митохондрии обеспечивают энергетическую сторону процесса- каналы цитоплазматической сети могут использоваться для транспорта переработанных веществ.

Схема пиноцитоза

Видео: Деление клетки митоз

Завершается внутриклеточное пищеварение образованием, с одной стороны, сравнительно простых продуктов, из которых синтезируются вновь сложные вещества (белки, жиры, углеводы), использующиеся для обновления клеточных структур или образования секретов, а с другой стороны, — продуктов, подлежащих выведению из клетки в качестве экскретов. Примерами использования продуктов переработки может служить синтез белков и образование секретов.

Рис. 19. Схема пиноцитоза:

Л — образование пиноцитозного канала (1) и пиноцитозных пузырьков (2). Стрелками показано направление впячивания плазмалеммы. Б— Ж — последовательные стадии пиноцитоза- 3 — адсорбируемые частички- 4 — частички, захваченные выростами клетки- 5 — плазмалем-ма клетки- Г, Д, Б — последовательные этапы формирования пиноци-тозной вакуоли- Ж — пищевые частицы освобождены от оболочки вакуоли.

Синтез белка осуществляется на рибосомах и условно происходит он в четыре стадии.

Первая стадия включает активирование аминокислот. Активация их происходит в матриксе цитоплазмы с участием ферментов (аминоацил — РНК —синтетаз). Известно около 20 ферментов, из которых каждый специфичен только для одной аминокислоты. Активация аминокислоты осуществляется при соединении ее с ферментом и АТФ.

В результате взаимодействия от АТФ отщепляется пирофосфат, и энергия, находящаяся в связи между первой и второй фосфатными группами, целиком переходит на аминокислоту. Активированная таким образом аминокислота (аминоациладенилат) становится реакционноспособной и приобретает способность соединяться с другими аминокислотами.

Вторая стадия — связывание активированной аминокислоты с транспортной РНК (т-РНК). При этом одна молекула т-РНК присоединяет только одну молекулу активированной аминокислоты. В этих реакциях участвует тот же фермент, что и в первой стадии, и реакция заканчивается образованием комплекса т-РНК и активированной аминокислоты. Молекула т-РНК состоит из двойной, замкнутой с одного конца короткой спирали. Замкнутый (головной) конец этой спирали представлен тремя нуклеотида-ми (антикодон), которые и обусловливают присоединенные данной т-РНК к определенному участку (кодону) длинной молекулы информационной РНК (и-РНК). К другому концу т-РНК присоединяется активированная аминокислота (рис. 20). Например, если молекула т-РНК на головном конце имеет триплет УАА, то к противоположному ее концу может присоединиться только аминокислота лизин. Таким образом, каждой аминокислоте соответствует своя особая т-РНК. Если три концевых нуклеотида в разных т-РНК одинаковы, то ее специфичность определяется последовательностью нукле-отидов в другом участке т-РНК. Энергия активированной аминокислоты, соединенной с т-РНК, используется для образования пептидных связей в молекуле полипептида. Активированная аминокислота транспортируется т-РНК по гиалоплазме к рибосомам.

Третья стадия — синтез полипептидных цепей. Информационная РНК, выйдя из ядра, протягивается через малые субъединицы нескольких рибосом определенной полирибосомы, и в каждой из них повторяются одни и те же процессы синтеза. Во время протяжки происходит укладка той моле-

Схема синтеза полипептида на рибосомах посредством и-РНК и т-РНК

Видео: Митоз. Митоз клетки. Фазы митоза



Рис. 20. Схема синтеза полипептида на рибосомах посредством и-РНК и т-РНК: /, 2-—рибосома- 3 — т-РНК, несущая на одном конце антикодоны: АЦЦ, AUA. Ayv АГЦ, а на другом конце соответственно аминокислоты: триптофан, валик, лизин, серин (5)- 4— н-РНК, в которой расположены коды: УГГ (триптофана)» УРУ (валина). УАА (лизина), УЦГ (серина)- 5 — синтезируемый полипептид.

кулы т-РНК, триплет которой соответствует кодовому слову и-РНК. Затем кодовое слово смещается влево, а вместе с ним и прикрепившаяся к нему т-РНК. Принесенная ею аминокислота соединяется пептидной связью с ранее принесенной аминокислотой синтезирующего полипептида- т-РНК отделяется от и-РНК, происходит трансляция (списывание) информации и-РНК, то есть синтез белка. Очевидно, к рибосомам одновременно бывают присоединены две молекулы т-РНК: одна на участке, несущем синтезирующуюся полипептидную цепь, а другая на участке, к которому прикрепляется очередная аминокислота перед тем, как встанет на свое .место в цепи.

Четвертая стадия — снятие полипептидной цепи с рибосомы и образование пространственной конфигурации, характерной для синтезируемого белка. Наконец, закончившая формирование белковая молекула становится самостоятельной. т-РНК может использоваться для повторных синтезов, а и-РНК разрушается. Длительность формирования белковой молекулы зависит от чиода аминокислот в ней. Считают, что присоединение одной аминокислоты продолжается 0,5 секунды.

Процесс синтеза требует затраты энергии, источником которой является АТФ, образующаяся главным образом в митохондриях и в незначительном количестве в ядре, а при повышенной активности клетки также и в гиало-плазме. В ядре в гиалоплазме АТФ образуется не на основе окислительного процесса, как в митохондриях, а на основе гликолиза, то есть анаэробного процесса. Таким образом, синтез осуществляется благодаря координированной работе ядра, гиалоплазмы, рибосом, митохондрий и зернистой цито-плазматической сети клетки.

Схема одного из возможных путей синтеза секрета в клетке и его выведение

Секреторная деятельность клетки также является примером слаженной работы ряда клеточных структур. Секреция — выработка клеткой специальных продуктов, которые в многоклеточном организме чаще всего используются в интересах всего организма. Так, слюна, желчь, желудочный сок и другие секреты служат для переработки пищи в

Рис. 21. Схема одного из возможных путей синтеза секрета в клетке и его выведение:

1 — просекрет в ядре- 2 — выход про-секрета из ядра- 3 — скопление просек-рета в цистерне цитоплазматической сети- 4 — отрыв цистерны с секретом от цитоплазматической сети- 5 — пластинчатый комплекс- 6 — капля секрета в районе пластинчатого комплекса- 7— зрелая гранула секрета- 8—9 — последовательные стадии выделения секрета- 10 — секрет вне клетки- 11 — плазмалемма клетки.

органах пищеварения. Секреты могут быть образованы либо только белками (ряд гормонов, ферменты), либо состоят из гликопротеидов (слизь), лигю-протеидов, гликолипопротеидов, реже они представлены липидами (жир молока и сальных желез) t или неорганическими веществами (соляная кислота фундальных желез).

В секреторных клетках обычно можно различить два конца: базальный (обращен к перикапиллярному пространству) и апикальный (обращен к пространству, куда выделяется секрет). В расположении компонентов секреторной клетки наблюдается зональность, причем от базального к апикальному концам (полюсам) они образуют следующий ряд: зернистая цитоплазматическая сеть, ядро, пластинчатый комплекс, гранулы секрета (рис. 21). Плазмалемма базального и апикального полюсов часто несет микроворсинки, в результате которых увеличивается поверхность для поступления веществ из крови и лимфы через базальный полюс и вывода готового секрета через апикальный полюс.

При образовании секрета белковой природы (поджелудочная железа) процесс начинается с синтеза специфичных для секрета белков. Поэтому ядро секреторных клеток богато хроматином, имеет хорошо выраженное ядрышко, благодаря которым образуются все три вида РНК, поступающие в цитоплазму и участвующие в синтезе белков. Иногда, по-видимому, синтез секрета начинается в ядре и завершается в цитоплазме, но чаще всего в гиалоплазме и продолжается в зернистой цитоплазматической сети. В накоплении первичных продуктов и их транспорте важную роль играют канальцы цитоплазматической сети. В связи с этим в секреторных клетках много рибосом и хорошо развита цитоплазматическая сеть. Участки цитоплазматической сети с первичным секретом отрываются и направляются к пластинчатому комплексу, переходя в его вакуоли. Здесь происходит формирование секреторных гранул.

При этом вокруг секрета образуется липопротеиновая мембрана, а сам секрет созревает (теряет воду), становясь более концентрированным. Готовый секрет в виде гранул или вакуолей выходит из пластинчатого комплекса и через апикальный полюс клеток выделяется наружу. Митохондрии обеспечивают весь этот процесс энергией. Секреты небелковой природы, видимо, синтезируются в цитоплазматической сети и в отдельных случаях даже в митохондриях (липидные секреты). Процесс секреции регулируется нервной системой. Кроме конструктивных белков и секретов, в результате обмена веществ в клетке могут образовываться вещества трофического характера (гликоген, жир, пигменты и др.), вырабатывается энергия (лучистая, тепловая и электрическая —биотоки).

Завершается обмен веществ в ы д е л е н и е м во внешнюю среду ряда веществ, которые, как правило, не используются клеткой и часто являются

для нее даже вредными. Вывод веществ из клетки осуществляется, как и поступление, на основе пассивных физико-химических процессов (диффузия, осмос), так и путем активного переноса. Морфологическая картина выведения нередко имеет характер, обратный фагоцшшу. Выводимые вещества окружаются мембраной.

Образовавшийся пузырек приближается к оболочке клетки, вступает в контакте нею, затем прорывается, и содержимое пузырька оказывается вне клетки.

Обмен веществ, как мы уже сказали, определяет и другие жизненные проявления клетки, такие, как рост и дифференцировка клеток, раздражимость, способность клеток к самовоспроизведению.

Рост клетки — внешнее проявление обмена веществ, выражающееся в увеличении размера клетки. Рост возможен лишь в том случае, если в процессе обмена веществ ассимиляция преобладает над диссимиляцией, причем каждая клетка растет лишь до определенного предела.

Дифференцировка клетки— это ряд качественных изменений, которые в разных клетках протекают различно и определяются средой и деятельностью участков ДНК, называемых генами. В результате возникают разнокачественные клетки разнообразных тканей, в дальнейшем клетки претерпевают возрастные изменения, которые мало изучены. Однако известно, что происходит обеднение клеток водой, частички белка укрупняются, что влечет за собой уменьшение общей поверхности дисперсной фазы коллоида и как следствие этого понижение интенсивности обмена веществ. Поэтому снижается жизненный потенциал клетки, замедляются окислительные, восстановительные и другие реакции, изменяется направленность некоторых процессов, из-за чего в клетке накапливаются различные вещества.

Раздражимость клетки — ее реакция на изменения во внешней среде, благодаря чему устраняются временные противоречия, возникающие между клеткой и средой, и живая структура оказывается приспособленной к уже измененной внешней среде.

В явлении раздражимости можно выделить следующие моменты:

1) воздействие агента внешней среды (например, механическое, химическое, лучевое и пр.)

2) переход клетки к деятельному, то есть возбудимому, состоянию, что проявляется в изменении биохимических и биофизических процессов внутри клетки, причем могут повышаться проницаемость клетки и поглощение кислорода, изменяться коллоидное состояние ее цитоплазмы, появляться электрические токи действия и т. д.-

3) ответ клетки на воздействие среды, причем в различных клетках ответная реакция проявляется по-разному. Так, в соединительной ткани происходит местное изменение обмена веществ, в мышечной — сокращение, в железистых тканях выделяется секрет (слюна, желчь и пр.), в нервных клетках возникает нервный импульс, В железистом эпителии, мыщечной и нервной тканях возбуждение, возникшее в одном участке, распространяется по всей ткани. В нервной клетке возбуждение способно распространяться не только на другие элементы той же ткани (в результате чего образуются сложные возбудимые системы —рефлекторные дуги), но и переходить на другие ткани. Благодаря этому и осуществляется регулирующая роль нервной системы. Степень сложности этих реакций зависит от высоты организации животного, В зависимости от силы и характера раздражающего агента различают следующие три типа раздражимости: нормальный, состояние паранекроза и некротический. Если сила раздражителя не выходит за пределы обычного, присущего среде, в которой живет клетка или организм в целом, то возникающие в клетке процессы в конце концов ликвидируют противоречие с внешней средой, и клетка приходит в нормальное состояние. При этом никакого видимого под микроскопом нарушения структуры клетки не происходит. Если же сила раздражителя велика или она длительно воздействует на клетку, то изменение внутриклеточных процессов приводит к значительному нарушению функции, структуры и химизма клетки. В ней появляются включения, образуются структуры в виде нитей, глыбок, сеточек и т. п. Реакция цитоплазмы сдвигается в сторону кислотности, изменение структуры и физико-химических свойств клетки нарушает нормальную жизнедеятельность клетки, ставит ее на грань жизни и смерти. Это состояние Насонов и Александров назвали паранекротическим* Оно обратимо и может закончиться восстановлением клетки, но может привести и к ее гибели. Наконец, если агент действует с очень большой силой, процессы внутри клетки так сильно нарушаются,что восстановление оказывается невозможным, и клетка гибнет. После этого наступает ряд структурных изменений, то есть клетка переходит в состояние некроза или омертвения.

Движение. Характер движения, присущего клетке, очень разнообразен. Прежде всего в клетке осуществляется непрерывное движение цитоплазмы, которое, очевидно, связано с осуществлением обменных процессов. Далее, у клетки могут очень активно двигаться различные цитоплазматиче-ские образования, например реснички у мерцательного эпителия, митохондрии- совершает движение и ядро. В других случаях движение выражается в изменении длины или объема клетки с последующим возвращением ее в исходное положение. Такое движение наблюдается в мышечных клетках, в мышечных волокнах и в пигментных клетках. Широко распространено и движение в пространстве. Оно может осуществляться при помощи ложноножек, как у амебы. Так передвигаются лейкоциты и некоторые клетки соединительной и других тканей. Особой формой движения в пространстве обладают спермин. Их поступательное движение происходит благодаря сочетанию змеевидных изгибов хвоста и вращения спермия вокруг продольной оси. У сравнительно просто организованных существ и у некоторых клеток высокоорганизованных многоклеточных животных движение в пространстве вызывается и направляется различными агентами внешней среды и называется таксисами.

Различают: хемотаксисы, тигмотаксисы и реотаксисы. Хемотаксисы — движение по направлению к химическим веществам или от них. Такой таксис обнаруживают лейкоциты крови, которые амебовидно передвигаются по направлению к проникшим в организм бактериям, выделяющим определенные вещества, Тигмотаксис — движение по направлению к прикоснувшемуся твердому телу или от него. Например, легкое прикосновение пищевых частичек к амебе приводит к тому, что она обволакивает их, а затем заглатывает. Сильное механическое раздражение может вызвать движение в сторону, противоположную раздражающему началу. Реотаксис —движение против тока жидкости. Способностью к реотаксису обладают спермин, движущиеся в матке против тока слизи по направлению к яйцевой клетке.

Способность к самовоспроизведению является важнейшим свойством живой материи, без чего жизнь невозможна. Всякая живая система характеризуется цепью необратимых изменений, которые завершаются смертью. Если бы эти системы не давали начала новым системам, способным начать цикл сначала, жизнь прекратилась бы.

Функция самовоспроизведения клетки осуществляется путем деления, которое является следствием развития клетки. В процессе ее жизнедеятельности, в силу преобладания ассимиляции над диссимиляцией, увеличивается масса клеток, но объем клетки увеличивается быстрее, чем ее поверхность. В этих условиях интенсивность обмена понижается, наступают глубокие физико-химические и морфологические перестройки клетки, постепенно затормаживаются процессы ассимиляции, что убедительно доказано с помощью меченых атомов. В результате вначале прекращается рост клетки, а затем становится невозможным дальнейшее ее существование, и происходит деление.

Переход к делению — это качественный скачок, или следствие количественных изменений ассимиляции и диссимиляции, механизм разрешения противоречий между этими процессами. После деления клетки как бы омолаживаются, жизненный потенциал их увеличивается, так как уже в силу уменьшения размера увеличивается доля активной поверхности, интенсифицируется обмен веществ в целом и ассимиляционная фаза его в особенности.

Таким образом, индивидуальная жизнь клетки слагается из периода интерфазы, характеризующейся повышенным обменом веществ, и периода деления.

Интерфазу с некоторой долей условности разделяют:

1) на пресинтетический период (Gj), когда интенсивность ассимиляционных процессов постепенно нарастает, но редупликация ДНК еще не началась-

2) синтетический (S), характеризующийся разгаром синтеза, в течение которого происходит удвоение ДНК, и

3) постсинтетический (G2), когда процессы синтеза ДНК прекращаются.

Различают следующие основные типы деления:

1) непрямое деление (митоз, или кариокинез)-

2) мейоз, или редукционное деление, и

3) амитоз, или прямое деление.<< ПредыдушаяСледующая >>
Внимание, только СЕГОДНЯ!
Поделиться в соцсетях:
Похожие
» » Жизненные процессы в клетке