Очистка газов от парообразных и газообразных примесей
Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на три основные группы:1) абсорбция жидкостями-
2) адсорбция твердыми поглотителями-
3) каталитическая очистка.
В меньших масштабах применяются термические методы очистки(сжигания или дожигания) горючих загрязнений, способ химического взаимодействия примесей с сухими поглотителями и окисление примесей озоном.
Абсорбция жидкостями применяется в промышленности для извлечения из газов диоксида серы, сероводорода, сероуглерода, меркаптанов и других сернистых соединений, оксидов азота, галогенов и их соединений, паров кислот (НСl, HF, H2SO4), диоксида и оксида углерода, разнообразных органических соединений (фенол, формальдегид, летучие растворители и прочее).
Абсорбционные методы основаны на избирательной растворимости газо- и парообразных примесей в жидкости (физическая абсорбция) или на избирательном извлечении примесей химическими реакциями с активным компонентом поглотителя (хемосорбция). Абсорбционная очистка – непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начало цикла очистки. При физической абсорбции (и в некоторых хемосорбционных процессах) регенерацию абсорбента проводят нагреванием и снижением давления, в результате чего происходит десорбция поглощенной газовой примеси и ее концентрирование. Схема установки для абсорбционно-десорбционного метода разделения газов показана на рисунке 19.
Показатели абсорбционной очистки: степень очистки и коэффициент массопередачи зависят от растворимости газа в абсорбенте, технологического режима в реакторе (скорости, температуры, давления) и от других факторов, например от равновесия и скорости химических реакций при хемосорбции. В хемосорбционных процессах, где в жидкой фазе происходят химические реакции, коэффициент массопередачи увеличивается по сравнению с физической абсорбцией. Большинство хемосорбционных процессов газоочистки обратимы, то есть при повышении температуры поглотительного раствора химические соединения, образовавшиеся при хемосорбции, разлагаются с регенерацией активных компонентов поглотительного раствора и с десорбцией поглощенной из газа примеси. Этот прием положен в основу регенерации хемосорбентов в циклических системах газоочистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей.
Абсорбенты, применяемые в промышленности, оцениваются по следующим показателям: 1) абсорбционная емкость, то есть растворимость извлекаемого компонента в поглотителе в зависимости от температуры и давления- 2) селективность, характеризуемая соотношением растворимостей разделяемых газов и скоростей их абсорбции- 3) минимальное давление паров
1 - абсорбер- 2 - десорбер- 3 - теплообменник- 4 - холодильник
Рисунок 19 - Схема установки для абсорбционно-десорбционного метода разделения газов
во избежание загрязнения очищаемого газа парами абсорбента- 4) дешевизна- 5) отсутствие коррозирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидрооксида кальция, оксидов марганца и магния, сульфат магния и другие.
Очистная аппаратура аналогична уже рассмотренной аппаратуре мокрого улавливания аэрозолей. Наиболее распространен насадочный скруббер, применяемый для очистки газов от диоксида серы, сероводорода, хлороводорода, хлора, оксида и диоксида углерода, фенолов и прочее. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивного гидродинамического режима этих реакторов, работающих при скорости газа от 0,02 до 0,7 м/с. Объемы аппаратов поэтому велики и установки громоздки.
Для очистки выбросов от газообразных и парообразных примесей применяют и интенсивную массообменную аппаратуру — пенные аппараты, безнасадочный форсуночный абсорбер, скруббер Вентури, работающие при более высоких скоростях газа. Пенные абсорберы работают при скоростях от 1 до 4 м/с и обеспечивают сравнительно высокую скорость абсорбционно-десорбционных процессов- их габариты в несколько раз меньше, чем насадочных скрубберов. При достаточном числе ступеней очистки (многополочный пенный аппарат) достигаются высокие показатели глубины очистки: для некоторых процессов до 99,9%. Особенно перспективны для очистки газов от аэрозолей и вредных газообразных примесей пенные аппараты со стабилизатором пенного слоя. Они сравнительно просты по конструкции и работают в режиме высокой турбулентности при линейной скорости газа до 4-5 м/с.
Примером безотходной абсорбционно-десорбционной циклической схемы может служить поглощение диоксида углерода из отходящих газов растворами моноэтаноламина с последующей регенерацией поглотителя при десорбции СО2. На рисунке 20 приведена схема абсорбции СО2 в пенных абсорберах- десорбция СО2 проводится также при пенном режиме. Установка безотходна, так как чистый диоксид углерода после сжижения передается потребителю в виде товарного продукта.
1 — холодильник- 2 — воздуходувка- 3 — пенный абсорбер- 4 — насос- 5 — теплообменник- 6 — пенный десорбер- 7 — кипятильник десорбера- I — газ на очистку- II — вода- III — очищенный газ- IV — диоксид углерода потребителю- V — пар
Рисунок 20 - Схема абсорбционной очистки газов от СО2 с получением товарного диоксида углерода:
Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы.
Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа.
Адсорбционные методы применяют для различных технологических целей — разделение парогазовых смесей на компоненты с выделением фракций, осушка газов и для санитарной очистки газовых выхлопов. В последнее время адсорбционные методы выходят на первый план как надежное средство защиты атмосферы от токсичных газообразных веществ, обеспечивающее возможность концентрирования и утилизации этих веществ.
Адсорбционные методы основаны на избирательном извлечении из парогазовой смеси определенных компонентов при помощи адсорбентов — твердых высокопористых материалов, обладающих развитой удельной поверхностью (отношение поверхности к массе, м2/г). Внутренняя структура наиболее распространенных на практике промышленных адсорбентов характеризуется наличием различных размеров и форм пустот или пор, среди которых различают макро-, мезо- и микропоры. Суммарный объем последних в единице массы или объема адсорбента определяет в решении задач газоочистки, как скорость(интенсивность) поглощения целевого компонента, так и адсорбционную способность твердым поглотителем этого компонента.
Промышленные адсорбенты, чаще всего применяемые в газоочистке, — это активированные угли, силикагели, алюмогели, природные и синтетические цеолиты (молекулярные сита). Основные требования к промышленным сорбентам — высокая поглотительная способность, избирательность действия (селективность), термическая устойчивость, длительная служба без изменения структуры и свойств поверхности, возможность легкой регенерации. Чаще всего для санитарной очистки газов применяют активный уголь благодаря его высокой поглотительной способности и легкости регенерации.
Различают физическую и химическую адсорбцию(хемосорбцию). При физической адсорбции поглощаемые молекулы газов и паров удерживаются силами Ван-дер-Вальса, при хемосорбции – химическими силами[1].
Адсорбцию газовых примесей обычно ведут в полочных реакторах периодического действия без теплообменных устройств- адсорбент расположен на полках реактора. Когда необходим теплообмен (например, требуется получить при регенерации десорбат в концентрированном виде), используют адсорберы с встроенными теплообменными элементами или выполняют реактор в виде трубчатых теплообменников- адсорбент засыпан в трубки, а в межтрубном пространстве циркулирует теплоноситель.
Очищаемый газ проходит адсорбер со скоростью от 0,05 до 0,3 м/с. После очистки адсорбер переключается на регенерацию. Адсорбционная установка, состоящая из нескольких реакторов, работает в целом непрерывно, так как одновременно одни реакторы находятся на стадии очистки, а другие — на стадиях регенерации, охлаждения и прочее. Схема адсорбционной газоочистной установки представлена на рисунке 21.
Регенерацию проводят нагреванием, например выжиганием органических веществ, пропусканием острого или перегретого пара, воздуха, инертного газа (азота). Иногда адсорбент, потерявший активность (экранированный пылью, смолой), полностью заменяют.
Наиболее перспективны непрерывные циклические процессы адсорбционной очистки газов в реакторах с движущимся или взвешенным слоем адсорбента, которые характеризуются высокими скоростями газового потока (на порядок выше, чем в периодических реакторах), высокой производительностью по газу и интенсивностью работы.
1— фильтр- 2, 3 — адсорберы- 4 — конденсатор- 5 — сепаратор- I— очищаемый газ- II — очищенный газ- III—водяной пар- IV — неконденсируемые пары- V- сконденсированный адсорбтив в хранилище- VI — водный конденсат
Рисунок 21 - Схема адсорбционной газоочистной установки
Общие достоинства адсорбционных методов очистки газов:
1) глубокая очистка газов от токсичных примесей-
2) сравнительная легкость регенерации этих примесей с превращением их в товарный продукт или возвратом в производство- таким образом, осуществляется принцип безотходной технологии.
Адсорбционный метод особенно рационален для удаления токсических примесей (органических соединений, паров ртути и прочих), содержащихся в малых концентрациях, то есть как завершающий этап санитарной очистки отходящих газов.
Недостатки большинства адсорбционных установок — периодичность процесса и связанная с этим малая интенсивность реакторов, высокая стоимость периодической регенерации адсорбентов. Применение непрерывных способов очистки в движущемся и кипящем слое адсорбента частично устраняет эти недостатки, но требует высокопрочных промышленных сорбентов, разработка которых для большинства процессов еще не завершена[17].
Термические методы обезвреживания газовых выбросов применяют для обезвреживания газов от легко окисляемых токсичных, а также дурно пахнущих примесей. Их преимуществами являются относительная простота аппаратурного оформления и универсальность использования, так как на работу термических нейтрализаторов мало влияет состав обрабатываемых газов.
Газовые выбросы, содержащие горючие компоненты, сильно различаются для различных промышленных источников как по номенклатуре подлежащих устранению компонентов, так и по числу последних, а также по теплоте сгорания и объемам, составляющим от десятков до сотен тысяч м3/ч. Способы газоочистки, основанные на высокотемпературном сжигании горючих примесей, широко используют в лакокрасочных производствах, процессах получения ряда видов химической, электротехнической и электронной продукции, в пищевой индустрии, в типографском деле, при обезжиривании и окраске деталей и изделий и во многих других процессах.
Суть этих способов заключается в окислении обезвреживаемых компонентов кислородом. Они применимы для обезвреживания практически любых паров и газов, продукты сжигания которых менее токсичны, чем исходные вещества. Прямое сжигание используют в тех случаях, когда концентрация горючих веществ в отходящих газах не выходит за пределы воспламенения. Процесс проводят в обычных или усовершенствованных топочных устройствах, в промышленных печах и топках котельных агрегатов, а также в открытых факелах.
Конструкция нейтрализатора должна обеспечивать необходимое время пребывания обрабатываемых газов в аппарате при температуре, гарантирующей возможность достижения заданной степени их обезвреживания (нейтрализации). Время пребывания обычно составляет от 0,1 до 0,5 с (иногда до 1 с), рабочая температура в большинстве случаев ориентирована на нижний предел самовоспламенения обезвреживаемых газовых смесей и превосходит температуру воспламенения на 100-150°С.
В некоторых случаях отходящие газы со значительным содержанием горючих компонентов могут быть использованы как топливо. В качестве самостоятельного топлива могут сжигаться отходящие газы с теплотворной способностью от 3,35 до 3,77 МДж/м3 и ниже, если они обладают повышенной температурой. Прямое сжигание газообразных отходов с использованием дополнительного топлива считают целесообразным в случаях, когда обезвреживаемые компоненты газовых выбросов могут обеспечить не менее 50% общего тепловыделения. Однако обычно содержание горючих примесей в отходящих газах значительно меньше нижнего предела воспламенения, что вызывает необходимость существенных затрат дополнительного топлива и утилизации тепла процесса сжигания прежде всего с целью сокращения этих затрат. Расход дополнительного топлива при сжигании таких газообразных отходов, нагретых до 50°С, составляет от 25 до 40 кг условного топлива на 1000 м3 обрабатываемых газов[1].
Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов, то есть на закономерностях гетерогенного катализах[18]. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствие которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Очистке подвергаются газы, не содержащие пыли и каталитических ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Проводят их в реакторах различной конструкции.
Широко распространен способ каталитического окисления токсичных органических соединений и оксида углерода в составе отходящих газов с применением активных катализаторов, не требующих высокой температуры зажигания, например металлов группы платины, нанесенных на носители. Обычно любые газообразные органические соединения могут подвергаться каталитическому сжиганию при условии, что продукты сгорания сами газообразны. К таким органическим примесям относятся соединения, содержащие серу или азот, но не кремний- и фосфорорганические соединения. Если содержание неорганической пыли в сжигаемом газе велико, она должна быть предварительно удалена, однако малое ее количество, которое обычно содержится в воздухе, может пройти через установку каталитического сжигания и в ряде случаев даже уловлено в ней. Этот осадок удаляется при периодической (годовой или полугодовой) промывке катализатора[19].
Особенностью процесса каталитического сжигания является природа окисляющего вещества. К таким веществам относятся следующие:
1) Активный металлический катализатор на металлическом носителе. Катализатор – платина или другой благородный металл – вместе с промоторами наносят на стружку из никелевого сплава
2) Активный металлический катализатор на подложке из оксида металла. Тонкий слой металла платиновой группы наносят на подложку – обожженный ?-оксид алюминия либо фарфор (свечного типа). Подложку изготавливают в виде цилиндрических гранул, расположенных рядами, смещенными по отношению друг к другу.
Катализатором может быть также ?-оксид алюминия с большой удельной поверхностью и платиновым покрытием. К этой же группе относится палладиевый катализатор на подложке из оксида алюминия. Он может применяться для удаления кислорода из газовых потоков, содержащих водород и кислород в стехиометрическом (и нестехиометрическом) отношении
3) Активный катализатор – оксид металла на подложке из оксида металла. Активные оксиды (например, ?-Al2O3), обладающие высокой удельной поверхностью, могут быть нанесены на подложку из оксида металла (например, на ?-Аl2О3). Такая система обладает следующими преимуществами: она способна выдерживать высокие температуры- в ее состав входят дешевые материалы (по сравнению с катализаторами из благородных металлов)- кроме того, она может быть изготовлена в виде стержней или таблеток.
К этой категории относятся также катализаторы, целиком состоящие из активного материала, включая и подложку- такие катализаторы называются иногда «бесподложечными». К их числу относится смесь оксидов меди и марганца («Хопкалит»), обеспечивающая полное сгорание углеводородов при 300-400 °С, за исключением метана (30% при 400°С).
4) Активный оксид металла на металлическом носителе. Было запатентована каталитическая система, представляющая собой металлическую проволоку в качестве подложки, покрытую слоем импрегинированного оксида металла- такая система одновременно является термосопротивлением[20].
Наиболее сложной проблемой, возникающей в процессе каталитического сжигания, является постепенная дезактивация или отравление катализатора при длительном сроке службы или при неожиданном появлении ядов в газовом потоке. Дезактивация обусловлена либо химическим взаимодействием газов с катализатором, либо покрытием катализатора слоем дезактивирующего вещества.
При использовании катализаторов с активным компонентом оксидом меди хлор и газообразный хлористый водород реагируют с ним с образованием хлорида меди. Если в основе катализаторов, используются оксиды алюминия, газы, содержащие сернистые соединения, реагируют с образованием сульфатов. С другой стороны, взаимодействие оксидов с SO2 при 300 °С очень ограничено.
Фосфорорганические соединения, встречающиеся в аэрозолях, образуемых смазками, при окислении дают фосфорную кислоту, которая покрывает катализатор тонким дезактивирующим слоем. Однако присутствие небольших количеств фосфинов и органических фосфатов практически незначительно влияют на эффективность работы катализатора с большой площадью поверхности.
Тяжелые металлы – свинец и мышьяк – действуют подобно фосфатам, образуя тонкие дезактивирующие пленки. Дезактивация и засорение катализатора могут быть обусловлены присутствием пыли в очищаемом газе. Если эта пыль огнеупорна (оксиды алюминия, кремния и железа), ее дезактивирующее действие может быть постоянным- если не произошло спекание, фильтрующие элементы могут быть очищены и активность катализатора частично восстановится[18].
Временная потеря активности может быть вызвана отложением мелкой угольной пыли и сажи вследствие неполного сгорания в камере. В этом случае уголь выжигается из катализатора при кратковременном повышении температуры до 350 °С, однако желательно достичь чистого пламени, если предусмотрены длительные периоды эксплуатации.
В ряде случаев эти установки являются источником тепла для подогрева отходящих углеводородных газов в некоторых отраслях промышленности.
В промышленности применяют также каталитическое восстановление и гидрирование токсичных примесей в выхлопных газах. На селективных катализаторах гидрируют СО до CH4 и Н2О, оксиды азота — до N2 и Н2О. Применяют восстановление оксидов азота в элементарный азот на палладиевом или платиновом катализаторах[1].
Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, то есть создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны.
Недостаток многих процессов каталитической очистки — образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбция), что усложняет установку и снижает общий экономический эффект.
Трудно провести границу между адсорбционными и каталитическими методами газоочистки, так как такие традиционные адсорбенты, как активированный уголь, цеолиты, служат активными катализаторами для многих химических реакций. Очистку газов на адсорбентах–катализаторах называют адсорбционно-каталитической. Этот прием очистки выхлопных газов весьма перспективен ввиду высокой эффективности очистки от примесей и возможности очищать большие объемы газов, содержащих малые доли примесей (например, 0,1-0,2 в объемных долях SO2). Но методы утилизации соединений, полученных при катализе, иные, чем в адсорбционных процессах.
Адсорбционно-каталитические методы применяют для очистки промышленных выбросов от диоксида серы, сероводорода и серо-органических соединений. Катализатором окисления диоксида серы в триоксид и сероводорода в серу служат модифицированный добавками активированный уголь и другие углеродные сорбенты. В присутствии паров воды на поверхности угля в результате окисления SO2 образуется серная кислота, концентрация которой в адсорбенте составляет в зависимости от количества водяного пара при регенерации угля от 15 до 70%.
Схема каталитического окисления H2S во взвешенном слое высокопрочного активного угля приведена на рисунке 22. Окисление H2S происходит по реакции
H2S + 1/2 О2 = Н2О + S (2)
Активаторами этой каталитической реакции служат водяной пар и аммиак, добавляемый к очищаемому газу в количестве около 0,2 г/м3. Активность катализатора снижается по мере заполнения его пор серой и когда масса S достигает 70—80% от массы угля, катализатор регенерируют промывкой раствором (NH4)2S. Промывной раствор полисульфида аммония разлагают острым паром с получением жидкой серы.
1 – циклон-пылеуловитель- 2 – реактор со взвешенным слоем- 3 – бункер с питателем- 4 – сушильная камера- 5 – элеватор- 6 – реактор промывки катализатора (шнек)- 7 – реактор экстракции серы (шнек-растворитель)- I – газ на очистку- II – воздух с добавкой NH3- III – раствор (NH4)2Sn на регенерацию- IV – раствор (NH4)2S- V – регенерированный уголь- VI – свежий активный уголь- VII – очищенный газ- VIII – промывные воды
Рисунок 22 - Схема каталитической очистки газа от сероводорода во взвешенном слое активного угля
Представляет большой интерес очистка дымовых газов ТЭЦ или других отходящих газов, содержащих SO2 (концентрацией 1-2% SO2), во взвешенном слое высокопрочного активного угля с получением в качестве товарного продукта серной кислоты и серы.
Другим примером адсорбционно-каталитического метода может служить очистка газов от сероводорода окислением на активном угле или на цеолитах во взвешенном слое адсорбента-катализатора [17].
Для полноценной очистки газовых выбросов целесообразны комбинированные методы, в которых применяется оптимальное для каждого конкретного случая сочетание грубой, средней и тонкой очистки газов и паров. На первых стадиях, когда содержание токсичной примеси велико, более подходят абсорбционные методы, а для доочистки — адсорбционные или каталитические.
Поделиться в соцсетях:
Похожие