lovmedgu.ru

Нервная клетка, нервное волокно, глия, синапс

Изобретение в XVII в. микроскопа позволило проникнуть в тайну строения живой и мертвой природы. Многочисленные исследования тканей, составляющих растительные и животные организмы, с помощью микроскопа показали, что они построены из мельчайших ячеек — клеток. Открытие клеточного строения живых организмов позволило выяснить некоторые сложные и неясные вопросы биологии и медицины. Боль-

Учение о клетке в дальнейшем развивалось в острых противоречиях. Спорным оказался ряд положений немецкого ученого Р- Вирхова, в течение ряда лет владевшего умами своих современников-врачей. Р. Вирхов, касаясь вопросов о путях клеткообразования, утверждал, что клетки образуются только из клеток, путем их деления. Другие пути клеткообразования отрицались. Это положение не разъясняло, а запутывало известный вопрос, являющийся предметом научного спора между материалистами и идеалистами о причинах возникновения жизни на Земле. Сущность этого спора в основном сводилась к следующему. Если живые клетки могут развиваться только из им подобных, то, естественно, возникал вопрос: как же возникла первая живая клетка, послужившая началом развития живого на Земле?

Наш мозг состоит из огромнейшего количества клеток. В одной коре больших полушарий насчитывают до 14 млрд. нервных клеток. Нервные клетки были открыты независимо от нервных волокон. Связь между нервными клетками и нервными волокнами предполагали многие исследователи, но ввиду несовершенства техники не могли ее доказать. Первые гистологические доказательства того, что нервное волокно представляет собой отросток нервной клетки, лежащей в центральной нервной системе, приводятся в работах русских ученых Ф.М. Овсянникова и Н.М. Якубовича. Позднее другим исследователям, применившим метод «расщипывания» нервной ткани, удалось выделить нервные клетки со всеми их отростками.

Нервная клетка с отходящими от нее отростками по предложению немецкого ученого В. Вальдеера (1891) получила название нейрона. Таким образом, нейрон является структурной единицей нервной ткани.

Другим структурным элементом нервной ткани считаются клетки глии — нейроглии. Будучи тесно связанными с нейронами, глиозные клетки, обладающие большим количеством отростков, представляют своеобразный опорный механизм, поддерживающий массу нейронов, а также выполняющий и ряд других функций — обменных, защитных и др.

Нейроны имеют различную форму, величину и характер отростков. Так, встречаются нейроны овальной формы, имеющие вид зерен, пирамидные, веретенообразные и др. Величина нейрона колеблется от 4 до 130 мкм. Цитоплазма нервной клетки {нейроплазмы) содержит обычные для всех типов клеток структурные части. В теле нейрона различают ядро и ядрышко, яв-

Нервная клетка



Рис. 19.

Нервная клетка

:

А. Общий вид- Б. 1 — тело клетки- 2 — ядро- 3 — ядрышко- 4 — отростки

ляющиеся наиболее важными составными элементами клетки (рис. 19). Вокруг ядра в цитоплазме после обработки метиленовой синью можно наблюдать своеобразные зерна синего цвета — хроматофильное вещество Ниссля (тельце Ниссля). Иногда эти зерна именуются тигроидным веществом или тигроидом (эти включения придают клетке своеобразную полосатость, напогтитя-ющую шкуру тигра). По>„. е импрегнации солями тяжелых металлов в нейроплазме выявляются тончайшие нити — нейрофибриллы. Электронно-микроскопическими

исследованиями показано, что нейрофибриллы состоят из пучков микротрубок различного диаметра. Эти структуры принимают участие в движении цитоплазмы (аксоплазматическом токе), а также в токе нейроплазмы в дендритах (рис. 20).

В цитоплазме нервной клетки можно встретить пигментные образования бурого или черного цвета — липофусцин и меланин.

От тела нейрона отходят отростки: короткие дендриты и длинные аксоны. В каждой клетке может быть несколько коротких отростков и один длинный. Отростки имеют своеобразные окончания. Так, короткие отростки заканчиваются мельчайшими ответвлениями, получившими название ши-пиков. Длинный отросток на конце разветвляется, образуя телодендрий. Тельца Ниссля обнаруживаются в дендритах, но не встречаются в аксонах. По дендритам к клетке поступают нервные импульсы. От нейрона импульсы распространяются по аксонам (рис. 21). Нейроны соединяются между собой при помощи своеобразных механизмов. Описано несколько форм межневронных соединений. Так, известный невро-гистолог С. Рамон-и-Кахал описал два типа таких соединений: 1) аксодендрический, при котором нити телодендрия соприкасаются с шипиками дендрита, что сопровождается выделением нейромедиатора ацетилхолина, вырабатываемого в

местах окончания отростков. Это соединение характерно для определенных групп клеток, находящихся в активном состоянии. Аксодендрический тип связей, по мнению С.А. Саркисова и Г.И. Полякова, преобладает в коре больших полушарий- 2) аксосоматический тип характеризуется образованием так называемой корзинки (по Гольджи), когда разветвления аксона оплетают все тело соседней клетки.

Так авторы нейронной теории представляли себе межклеточные соединения,образующие особые контакты, или синапсы (рис. 22). Однако механизм передачи возбуждения с одного нейрона на другой все же еще не представляется окончательно ясным. Имеется предположение о том (школа акад. К.М. Быкова), что механизм передачи возбуждения с одного нейрона на другой, в частности с афферентного на эфферентный1, обусловливается разностью электрических потенциалов, возникающих в области синапсов, что может быть в какой-то степени связано с образованием высокоактивных соединений типа упомянутого выше ацетилхолина.

По мнению В.А. Делова, образование в нервных клетках или в области синаптических окончаний ацетилхолина не исчерпывает всего цикла биохимических и физико-химических реакций, характеризующих деятельность центральной нервной системы, но является, по всей вероятности, обязательным

Схема строения нервной клетки по данным электронной микроскопии (по Глезеру)



Рис. 20.

Схема строения нервной клетки по данным электронной микроскопии (по Глезеру)

:

1 — канальцы эргастоплазмы (тигроид)- 2 — аксосоматические контакты- 3 — аксо-дендрические контакты- 4— митохондрии- 5 — аппарат Гольджи- 6 — ядро клетки- 7 — ядрышко- 8 — микросомы- 9 — осмиофиль-ные тела- 10 — микротрубочки- 11 — си-наптические пузырьки- 12 — аксон с его миелиновой оболочкой

1 Афферентный — чувствительный нервный путь-эфферентный — двигательный нервный путь.

Схематическое изображение нейрона



Рис. 21.

Схематическое изображение нейрона

:

1 — тело- 2 — ядро- 3 — дендриты- 4 — аксон- 5 — оболочки, образующие вместе с аксоном нервное волокно- 6 — конечные разветвления аксона (телодендрий)

Механизм синапса



Рис. 22.

Механизм синапса



Продольное сечение нервного волокна



Рис. 23.

Продольное сечение нервного волокна

:

1 — осевой цилиндр- 2 — миелин- 3 — неврилемма- 4 — мякотная (покровная) клетка- 5 — ядро неврилеммы

звеном в цепи процессов, определяющих передачу возбуждения с нейрона на нейрон.

Роль так называемой нервной сети, состоящей из нейрофибрилл, в процессах проведения нервных импульсов очень велика на низших уровнях развития животного мира. У млекопитающих, и особенно у человека, ее значение ограничено в связи с тенденцией к более тонкой дифференциации в структуре аппаратов, проводящих возбуждение.

Нервное волокно (рис. 23) представляет собой продолжение

отростков нейрона, в частности аксона. В центре нервного волокна проходит осевой цилиндр, образуемый скоплением пучков нейрофибрилл и представляющий центральный механизм, обеспечивающий проведение нервных импульсов. На некотором расстоянии от тела нейрона волокна покрываются двумя оболочками. Непосредственно осевой цилиндр обволакивает миелиновая оболочка. Миелин не сплошь покрывает осевой цилиндр, а образует перерывы, называемые перехватами Ранвье, куда впадают кровеносные и лимфатические сосуды, снабжающие осевой цилиндр. Миелиновая обкладка, в свою очередь, покрыта тонким, не имеющим структуры чехлом — неврилеммой, или шванновской оболочкой. Роль миелиновой оболочки двоякая. С одной стороны, она предохраняет осевой цилиндр от всевозможных вредных влияний, с другой — ускоряет проведение нервных импульсов по нервному волокну. Различают мякотные нервные волокна, покрытые миелиновой оболочкой, и безмякотные (голые), входящие в состав симпатических нервов и обонятельных нитей. Скорость прохождения волны возбуждения в нерве, имеющем миелиновую оболочку, от 60 до 120 м/с. В безмякотном нерве эта скорость меньше (от 1 до 30 м/с). Нервные волокна объединяются в нервные пучки и образуют периферические нервы. В крупных периферических нервах количество нервных волокон может доходить до нескольких тысяч. Это связано с тем, что этим нервам приходится снабжать громадное количество мышечных волокон, образующих скелетную мускулатуру.

Глия (невроглия). В состав нервных элементов, образующих нервную систему, включается еще один вид нервной ткани, известной под названием глии или невроглии. Эта ткань интимно связана с нейронами и их отростками, составляя по существу единую систему. По характеру клеточного строения нейроглия делится на микро- и макроглию. Для строения мак-роглии характерно наличие звездчатых клеток — астроцитов, обладающих большим количеством отростков, лучеобразно отходящих от тела клетки. Значение макроглии опорное: она как бы склеивает все элементы нервной системы, являясь своеобразным каркасом, поддерживающим массу нейронов. Мик-роглия состоит из клеток, выполняющих преимущественно трофические и защитные функции.

Нейронная теория углубила знания о характере строения нервной ткани. Однако следует помнить, что она создавалась в тот период, когда основные законы нервной деятельности, построенные на рефлекторном принципе, еще не получили ведущей роли в неврологии. Идеи Р. Вирхова, представлявшего организм как механическую сумму органов и систем, имели главенствующее значение. Представители нейронной теории рассматривали нейрон не только как элемент структуры, но придавали ему значение физиологической единицы. Такое представление, естественно, приводило к неправильному пониманию целостной деятельности нервной системы, которая определялась как некая механическая сумма, складывающаяся из деятельности отдельных нейронов. Подобное мнение не могло удовлетворять современных сторонников нейронной теории.

Современная нейрофизиология определяет закономерности целостной деятельности коры больших полушарий, исходя из рефлекторного принципа. Отсюда направленность процессов возбуждения и торможения зависит от целого ряда различных влияний, а не только от деятельности отдельных нейронов. В этом случае большое значение получает то новое качество, которое создается в результате деятельности синапсов. Синапсы объединяют в новую качественную категорию отдельные нейроны. На основе этих связей и образуются физиологические механизмы, осуществляющие нервную деятельность, т.е. бесчисленные рефлексы головного и спинного мозга.<< ПредыдушаяСледующая >>
Внимание, только СЕГОДНЯ!
Поделиться в соцсетях:
Похожие
» » Нервная клетка, нервное волокно, глия, синапс