Ацетилхолин
Видео: Ацетилхолин, IQ 160
Ни один нейрон не существует в одиночестве, предоставленный самому себе. Обычно он контактирует с другим нейроном. Это происходит путем переплетения аксона одного нейрона (ветвей, выходящих из конца аксона) с несколькими дендритами другого. Ни в одном месте отростки одного нейрона не сливаются с отростками другого. В любом случае между отростками контактирующих нейронов существует микроскопическая, но четко определимая щель. Эта щель называется синапсом («синапс» по-гречески означает «соединение», хотя это слово в данном случае означает то, чего в действительности нет).Здесь возникает первая проблема. Нервный импульс действительно переходит от одного нейрона к другому, по каким образом он преодолевает синаптическую щель? Первая мысль - импульс проскакивает между нейронами, как искра проскакивает через изолирующую воздушную среду, разделяющую токопроводящие поверхности при достаточном электрическом потенциале. Но электрические потенциалы, обусловливающие распространение нервного импульса (за исключением электрических скатов, о которых мы уже говорили), недостаточно сильны для того, чтобы провести ток через изолирующую щель. Надо искать какое-то иное решение, и если в этом нам не поможет электричество, то придется обратиться к помощи химии.
В процессе эволюции, на ранних ее стадиях, природа выработала способ стимуляции нервного волокна путем воздействия на него веществом, синтезированным из уксусной кислоты и холина, двух веществ, присутствующих в любой клетке. В результате этой реакции образуется ацетилхолин. Именно этот ацетилхолин изменяет работу натриевого насоса таким образом, что происходит деполяризация и возникает нервный импульс.
Очень легко представить себе, как ацетилхолин окутывает мембрану и изменяет ее свойства. Такую картину многие рисуют для иллюстрации действия гормонов на клетку вообще, и по этой причине ацетилхолин иногда рассматривают как нейрогормон, действующий на нервное волокно. Такое сравнение, однако, хромает. Ацетилхолин не секретируется в кровеносное русло и не транспортируется с кровью, как это происходит со всеми гормонами, которые я описал в первой части книги. Напротив, ацетилхолин секретируется непосредственно на мембрану нервной клетки и действует прямо на месте. Эта разница заставила некоторых исследователей говорить об ацетилхолине как о нейрогуморе (гумором в старые времена называли любую биологическую жидкость).
Ацетилхолин, образованный нервными окончаниями, не может долго находиться возле нервной клетки, так как в его присутствии не происходит регюляризация. К счастью, в нервах содержится фермент холинэстераза, который снова расщепляет ацетилхолин на уксусную кислоту и холин. Как только это расщепление происходит, сразу меняются свойства клеточной мембраны и начинается ре-поляризация. Образование и расщепление ацетилхолина происходят с потрясающе высокой скоростью, и скорость этих химических изменений не уступает скорости формирования и проведения по волокнам нервных импульсов, то есть скорости чередования циклов деполяризации и реполяризации.
Доказательство того, что пара ацетилхолин/холинэстераза всегда присутствует при проведении нервного импульса, не является прямым, но представляется достаточно убедительным. Все нервные клетки содержат ферменты, катализирующие как образование ацетилхолина, так и его расщепление. Я хочу сказать, что это вещество можно обнаружить у всех многоклеточных организмов, за исключением самых простых - губок и медуз. В особенности много холинэстеразы в электрических органах электрического угря, причем потенциалы, генерируемые угрем, прямо пропорциональны содержанию в электрических органах холинэстеразы. Более того, любое вещество, которое блокирует действие холинэстеразы, блокирует и проведение нервных импульсов.
Возникает представление о нервном импульсе как о координированных химических и электрических эффектах, которые совместно проявляются в аксоне нервного волокна. Это более плодотворно, нежели считать, что передача импульса обусловлена только электрическими явлениями, так как, прибывая вместе с импульсом к пропасти синапса, мы уже не чувствуем себя беспомощными оттого, что электрический импульс не может ее преодолеть- химическое вещество легко решает эту задачу. Ацетилхолин высвобождается в окончаниях аксона одного нерва и действует на дендрит или на тело клетки другого нейрона, пересекая синапс, и порождает на следующем нейроне новый нервный импульс. Электрическая волна пойдет по следующему нейрону до синапса, где в игру снова вступит химический эффект, и так далее. (Импульс переходит с аксона на дендрит, но не в обратном направлении. Именно это обстоятельство заставляет нерв проводить импульсы только в одном направлении, хотя нервное волокно обладает способностью проводить его в любую сторону.)
Аксон нейрона может соединяться не только с другим нейроном, но и с каким-либо органом, на который он передает импульс. Обычно таким органом является мышца. Конец аксона тесно соприкасается с сарколеммой, то есть с мембраной, покрывающей мышечное волокно. Там, в ближайшем соседстве с мышцей, аксон ветвится. При этом каждая ветвь направляется к отдельному мышечному волокну. Надо при этом помнить, что окончания аксона не сливаются с мышечными волокнами. В местах их соприкосновения существует микроскопическая, но вполне различимая щель. Это похожее на синапс соединение между нервом и мышцей называется нервно-мышечным соединением (или мионевральным соединением).
В нервно-мышечном соединении разыгрываются интересные химические и электрические явления. Движение электрического потенциала прекращается, но химическое вещество ацетилхолин легко преодолевает препятствие. Секреция ацетилхолина изменяет свойства мембраны мышечного волокна, вызывает вход ионов натрия в мышечную клетку и инициирует волну деполяризации, почти так же, как это происходит в нервных клетках. Мышечные волокна, получив волну возбуждения, в ответ сокращаются. Все мышечные волокна, к которым подходят ветви одного нерва, сокращаются одновременно как одно целое. Такую группу волокон называют двигательной единицей.
Любое вещество, подавляющее действие холинэстеразы и прерывающее цикл синтеза и расщепления ацетилхолина, не только погасит нервный импульс, но подавит также стимуляцию и сокращение мышцы. Это подавление приведет к развитию паралича произвольных мышц конечностей и грудной клетки, а также сердечной мышцы. При этом смерть наступит очень быстро, через 2 - 10 минут.
В 40-х годах германские химики, исследуя инсектициды, синтезировали несколько веществ, которые оказались мощными ингибиторами холинэстеразы. Эти вещества действительно смертельны. В жидком виде они проникают сквозь кожу и, достигнув кровеносных сосудов, быстро убивают. Эти вещества оказались более убийственными, чем те отравляющие вещества, которые использовались в Первой мировой войне. Германия не использовала боевые отравляющие вещества во время Второй мировой войны, но предполагается, что под названием «нервные газы» их могут применить в третьей мировой войне, если, конечно, останется кого убивать после нанесения первых и ответных ядерных ударов.
Природа тоже не сидела сложа руки и работала над созданием такого рода соединений. Есть некоторые алкалоиды, которые, будучи превосходными ингибиторами холинэстеразы, могут стать не менее превосходными убийцами. Речь идет о кураре - яде, которым индейцы Южной Америки смазывали наконечники своих стрел. (Когда новость об этом яде проникла в цивилизованный мир, все заговорили о таинственном, не оставляющем следов южноамериканском яде. Волна паники стимулировала фантазию писателей, сочинивших массу мистических триллеров на эту тему.) Еще одним примером естественного ингибитора холинэстеразы могут служить яды некоторых поганок, включая один, который очень метко нарекли «ангелом смерти».
Но, тем не менее, даже нервные газы могут оказаться полезными. Иногда случается так, что нервно-мышечные соединения человека начинают с трудом пропускать поступающие по нервам импульсы. Это заболевание называется тяжелой миастенией (то есть тяжелой мышечной слабостью). Болезнь проявляется нарастающей слабостью мышц, особенно мимических. Наиболее вероятной причиной болезни является либо недостаточное образование ацетилхолина, либо быстрое его разрушение холинэстеразой. Лечебное воздействие ингибиторов холинэстеразы заключается в сохранении ацетилхолина и хотя бы во временном улучшении состояния больных.
Хотя мышечные волокна можно стимулировать непосредственно и заставить их сокращаться, - например, прямым воздействием электрического тока, - в норме мышца стимулируется только импульсами, передаваемыми с нервных волокон. По этой причине любое повреждение нервных волокон, либо в результате травмы, либо в результате такого заболевания, как полиомиелит, приводит к развитию параличей. Подвергшийся дегенерации в результате травмы или болезни аксон может регенерировать при условии, что его неврилемма осталась целой. Если же неврилемма погибла или если у аксона нет неврилеммы (а это касается многих аксонов), то регенерации не происходит. Более того, если разрушается тело нервной клетки, то ее восстановления не происходит. (Тем не менее, не все еще потеряно. В 1963 году впервые была осуществлена успешная пересадка нерва от одного человека другому. Возможно, наступит такое время, когда будут созданы «банки нервов», и мы сможем лечить параличи, вызванные гибелью нервных клеток.)
В отдельно взятом нервном волокне не наблюдают градации импульсов. Это означает, что слабый стимул не вызывает формирования слабого импульса, а более сильный стимул - более сильного импульса. Нейрон сконструирован так, что реагирует на стимулы по закону «все или ничего». Стимул, слишком слабый для того, чтобы вызвать возникновение импульса, называется «подпороговым». Действительно, можно зарегистрировать малые по амплитуде мембранные потенциалы, которые вызывают появление слабых трансмембранных токов, но эти токи быстро угасают, не формируя нервный импульс. (Если, однако, до того, как успеет угаснуть первый слабый стимул, на нервную клетку подействует второй слабый, подпороговый стимул, то их действие суммируется, и импульс может возникнуть.)
Представляется, что малые токи не могут длительно существовать в нерве - сопротивление его мембраны слишком велико. С другой стороны, достаточно сильный стимул, способный инициировать импульс («пороговый стимул»), приводит к электрическим и химическим эффектам, которые, не угасая, регенерируют по всей длине нервного волокна. (Почему амплитуда потенциалов по мере прохождения волны деполяризации по нерву не угасает, неизвестно, но полагают, что в этом играют важную роль перехваты Ранвье.) Пороговый стимул вызывает максимальный ответ нерва. Более сильный стимул не может вызвать более сильного ответа. Этим можно постулировать упомянутый закон «все или ничего»: нервное волокно либо проводит импульс максимальной силы, либо не проводит никакого импульса вообще.
Закон «все или ничего» распространяется и на органы, которые стимулирует нерв. Мышечное волокно, получившее стимул от нервного волокна, отвечает на него сокращением постоянной силы. Кажется, что это противоречит повседневному опыту. Действительно, если нервное волокно всегда проводит один и тот же импульс (если вообще проводит) и если мышечное волокно всегда сокращается с постоянной силой (если вообще сокращается), то каким образом нам удается по желанию регулировать силу сокращения бицепса от едва заметного подергивания до полного мощного сокращения?
Ответ заключается в том, что нельзя считать нервы и мышцы изолированными во времени и пространстве. Орган не обязательно иннервируется единственным нервным волокном, этих волокон может быть несколько десятков. Каждое нервное волокно имеет свой порог в зависимости, например, от его диаметра. Чем толще волокно, тем ниже его порог стимуляции. Слабого стимула вполне может хватить для его возбуждения. Следовательно, слабый стимул может инициировать потенциал в одних волокнах и не инициировать его в других. (Минимальным называется такой слабый стимул, который способен инициировать возбуждение только в одном нервном волокне.) Мышца лишь едва дернется, если сократится одна двигательная единица под воздействием минимального стимула. При усилении стимула все больше и больше волокон будет разряжаться, все больше и больше двигательных единиц будет сокращаться. Когда стимул станет настолько сильным, что вызовет возбуждение всех нервных волокон (максимальный стимул), то мышца сократится полностью. Никакой более мощный стимул не сможет вызвать более сильного ответа.
Сила ответа зависит также от временных факторов. Если нервное волокно передает на двигательную единицу импульс, то она в ответ сокращается, а потом расслабляется. Это расслабление продолжается некоторое время. Если второй импульс приходит к мышце до окончания процесса расслабления, то мышца сокращается снова, но с более высокой точки старта, поэтому сокращение будет сильнее. Третий импульс добавит сокращению еще больше силы и так далее. Чем быстрее будут следовать импульсы, тем сильнее будет сокращение мышцы. Число импульсов, которое может быть проведено по нервному волокну за одну секунду, весьма велико и зависит от длительности рефрактерного периода. Тонкие нервные волокна имеют рефрактерный период около 1/250 доли секунды, то есть даже такое волокно может провести двести пятьдесят импульсов в одну секунду. Толстые миелинизированные волокна могут за то же время провести в 10 раз больше импульсов.
В реальной жизни мышца обычно стимулируется частью нервных волокон нерва, а каждое волокно разряжается с определенной частотой. В результате взаимодействия этих двух переменных параметров можно, не нарушая закона «все или ничего», тонко регулировать силу сокращения мышцы.
Поделиться в соцсетях:
Похожие