Анатомия и физиология ноцицепции
Пути проведения болевой чувствительностиБолевые ощущения проводятся через трехней-ронные пути, которые передают ноцицептивный стимул от периферии в кору головного мозга (рис. 18-1). Тела первых нейронов находятся в спинномозговых узлах, расположенных в меж-позвонковных отверстиях. Каждый первый нейрон имеет один аксон, который делится на два отростка: один из них иннервирует периферические ткани, а другой в составе заднего корешка направляется в задний рог спинного мозга и заканчивается синапсом на клетках вторых нейронов. Аксон второго нейрона, тело которого лежит в заднем роге, направляется на противоположную сторону спинного мозга через переднюю белую спайку и входит в боковой канатик, где включается в состав спиноталамического пути. Второй нейрон заканчивается синапсом на клетках таламуса. Здесь лежит тело третьего нейрона, отросток которого проходит через внутреннюю капсулу и в составе лучистого венца достигает постцентральной извилины коры головного мозга.
Первые нейроны
Проксимальный отросток подавляющего большинства первых нейронов входит в спинкой мозг в составе заднего (чувствительного) корешка спинномозгового нерва в каждом шейном, грудном, поясничном и крестцовом сегменте. Некоторые немиелинизированные афферентные волокна (типа С) входят в спинной мозг в составе вентральных (двигательных) корешков. Этот феномен объясняет случаи, когда больные продолжают ощущать боль даже после пересечения задних корешков (такая операция называется ризотомией). Кроме того, есть сообщения о появлении боли при стимуляции вентральных корешков. В задних рогах аксоны первых нейронов переключаются не только на вторые нейроны, но и на вставочные нейроны, симпатические нейроны и двигательные нейроны из передних рогов.
Болевые импульсы из области головы передаются волокнами тройничного (V пара), лицевого (VII пара), языкоглоточного (IX пара) и блуждающего (X пара) нервов. Гассеров (тройничный) узел представляет собой скопление тел первых чувствительных нейронов, периферические отростки которых направляются в составе ветвей тройничного нерва — глазного нерва, верхнечелюстного нерва и нижнечелюстного нерва. Тела первых чувствительных нейронов лицевого нерва находятся в узле коленца, тела соответствующих нейронов языкоглоточного нерва — в верхнем и нижнем узлах языкоглоточного нерва, блуждающего нерва --в верхнем (соматическая иннервация) и нижнем (вегетативная иннервация) узле блуждающего нерва. Проксимальные отростки аксонов первых нейронов из этих узлов достигают ядер черепных нервов, где образуют синапсы со вторыми нейронами.
Вторые нейроны
После того как афферентные волокна входят в спинной мозг, они разделяются в соответствии с размерами, при этом толстые миелинизированные волокна располагаются медиально, а тонкие немиелинизированные — латерально. Перед переключением на вторые нейроны в сером веществе ипсилатеральных задних рогов спинного мозга, некоторые волокна болевой чувствительности могут в составе проводящего пути Лиссауэра подниматься или опускаться на один-три сегмента спинного мозга. Во многих случаях связующим звеном между первыми и вторыми нейронами являются вставочные нейроны. Согласно Рекседу, серое вещество спинного мозга разделено на 10 пластин, или слоев, идущих в направлении от продолговатого мозга каудально (рис. 18-2 и табл. 18-4). Первые шесть пластин, которые формируют задние рога, воспринимают всю афферентную информацию и являются основным местом модуляции боли посредством восходящих и нисходящих влияний (см. далее). Вторые нейроны функционально представляют собой либо ноци-цептивно-специфичные нейроны, либо нейроны широкого динамизма. Ноцицептивно-специфичные нейроны реагируют только на ноцицептивные стимулы, в то время как нейроны широкого динамизма воспринимают по волокнам А?, А? и С также и не-ноцицептивные афферентные импульсы.
Рис. 18-1. Пути проведения болевой чувствительности
Видео: Тело человека. Печень (hepar).
Рис. 18-2. Слои серого вещества спинного мозга по Рекседу
Ноцицептивно-специфичные нейроны находятся в I пластине, имеют дискретные соматические рецепторные поля, в норме находятся в состоянии покоя и реагируют только на высокопороговую ноцицептивную стимуляцию, плохо кодируя ее интенсивность. Нейроны широкого динамизма — наиболее распространенный тип клеток в веществе задних рогов. Хотя нейроны широкого динамизма находятся во всех участках задних рогов, в большей степени они сконцентрированы в V пластине. При повторяющейся стимуляции частота импульсации нейронов широкого динамизма ступенчато возрастает по экспоненте ("реакция испуга"), даже если интенсивность стимула не увеличивается. Подобно ноцицептивно-специфичным нейронам, нейроны широкого динамизма имеют обширные рецепторные поля.
Большинство ноцицептивных волокон типа С имеют коллатерали или заканчиваются на вторых нейронах в I, II и, в меньшей степени, в V пластине. В отличие от них, ноцицептивные волокна типа А? образуют синапсы преимущественно в пластинах I и V, и, в меньшей степени, в X пластине. Клетки I пластины реагируют главным образом на ноцицептивные импульсы из кожи и глубоких соматических структур. Пластина II, называемая также студенистым веществом (substantia gelatinosa), содержит много вставочных нейронов и играет большую роль в восприятии и модуляции ноцицептивных импульсов с кожи. Пластина II представляет особый интерес, поскольку считается, что именно она — главное место действия опиоидов. Пластины III и IV воспринимают в основном неноцицептив-ные сенсорные импульсы. Передние (двигательные) рога формируются преимущественно VIII и IX пластинами. VII пластина носит название латерального промежуточного столба и содержит тела преганглионарных симпатических нейронов.
Висцеральные афферентные волокна заканчиваются в основном в V пластине, в меньшей степени — в I. Эти две пластины представляют собой зону центральной конвергенции соматических и висцеральных импульсов. V пластина реагирует на ноцицептивные и неноцицептивные сенсорные импульсы, воспринимает соматическую и висцеральную боль. Феномен конвергенции (схождения) висцеральных и соматических сенсорных импульсов клинически проявляется иррадиацией боли (табл. 18-3). В отличие от соматических волокон, висцеральных ноцицептивных волокон меньше, они более диффузно распределены, активируют относительно большее количество нейронов в спинном мозге и не имеют соматотопической организации.
А. Спиноталамический путь. Аксоны большинства вторых нейронов направляются на противоположную сторону спинного мозга через переднюю белую спайку, включаются в состав спи-ноталамического пути и достигают таламуса, ретикулярной формации, ядра шва и центрального серого вещества (околоводопроводного). Спино-таламический путь — главный путь проведения болевой чувствительности — проходит в переднела-теральном отделе белого вещества спинного мозга. Этот восходящий путь можно разделить на латеральный PI медиальный. Аксоны второго нейрона латерального спиноталамического пути (синоним — неоспиноталамический путь) заканчиваются синапсом на клетках вентральных заднелатераль-ных ядер таламуса. Латеральный спиноталамичес-кий путь обеспечивает восприятие дискримина-тивных аспектов боли — таких как локализация, интенсивность и длительность. Аксоны второго нейрона медиального спиноталамического пути (синоним — палеоспиноталамический путь) заканчиваются синапсом на клетках медиальных отделов таламуса. Медиальный спиноталамический путь обеспечивает восприятие вегетативных и эмоциональных аспектов боли. Некоторые волокна спиноталамического тракта заканчиваются на клетках центрального серого вещества и могут служить важным связующим звеном между восходящими и нисходящими проводящими путями (см. ниже). Коллатеральные волокна образуют синапсы на нейронах активирующей ретикулярной формации и гипоталамуса, что обеспечивает реакцию активации при болевой стимуляции.
ТАБЛИЦА 18-4. Пластины (слои) серого вещества спинного мозга
Видео: Человек. Анатомия и физиология. Нервная система. Головной мозг
Б. Альтернативные пути проведения болевой чувствительности. Аналогично путям проведения эпикритической чувствительности, ноцицептивные волокна могут проходить диффузно, ипсила-терально и контралатералъно, поэтому некоторые больные продолжают ощущать боль после хирургического пересечения контралатерального спиноталамического пути. Таким образом, помимо спиноталамического пути, играют весьма важное значение и другие восходящие пути проведения болевой чувствительности. Считают, что спиноре-тикулярный путь опосредует реакцию активации и реакцию вегетативной нервной системы на боль. Спиномезенцефалический путь может активировать нисходящие антиноцицептивные влияния, потому что некоторые его волокна заканчиваются на клетках центрального серого вещества. Спино-гипоталамический и спинотеленцефалический пути активируют гипоталамус и влияют на эмоционально-поведенческие аспекты восприятия боли. Спинно-шейный путь, не пересекая среднюю линию, поднимается до латерального шейного ядра, которое отдает волокна к контралатеральному та-ламусу- этот путь, вероятно, является главным альтернативным путем проведения болевой чувствительности. Наконец, некоторые волокна в задних столбах серого вещества (которые обеспечивают перцепцию тактильной и проприоцептивной чувствительности) могут проводить болевые импульсы- этот путь в спинном мозге проходит медиально и ипсилатерально.
В. Интеграция с симпатической и двигательной системами. Соматические и висцеральные афферентные волокна образуют многочисленные синапсы с двигательными и симпатическими волокнами в спинном и продолговатом мозге, а также в высших мозговых центрах. Афферентные нейроны задних рогов переключаются на двигательные нейроны передних рогов с помощью прямого синаптического контакта, а также через вставочный нейрон. Эти синапсы обеспечивают рефлекторную мышечную активность (как физиологическую, так и патологическую) при болевом раздражении. Контакты между афферентными ноцицептивными нейронами и симпатическими нейронами в латеральном промежуточном столбе обеспечивают вегетативную реакцию на боль — вазоконстрикцию, спазм гладкой мускулатуры, выброс катехоламинов локально и из мозгового слоя надпочечников.
Третьи нейроны
Третьи нейроны расположены в таламусе и посылают волокна в соматосенсорные поля I и II, которые расположены в постцентральной извилине коры головного мозга. Эти поля коры обеспечивают перцепцию и дискретную локализацию боли. В то время как большинство нейронов латеральных ядер таламуса переключается на клетки сома-тосенсорной коры, нейроны внутрипластинчатых и медиальных ядер образуют синапсы с клетками передней поясной извилины, опосредуя эмоциональный компонент боли.
Физиология ноцицепции
1.НОЦИЦЕПТОРЫ
Рецепторы, которые воспринимают ноцицептив-ный стимул, называются ноцицепторами. Для ноци-цепторов характерны высокий порог активации и кодировка интенсивности стимула за счет ступенчатого повышения частоты импульсации. При повторной стимуляции развиваются отсроченная адаптация, сенситизация (см. ниже), а также спонтанная активация даже в отсутствие стимуляции.
Ноцицептивное ощущение можно разделить на два компонента. Острая, непродолжительная и хорошо локализованная "первая боль" возникает после короткого латентного периода (0,1 с), проводится по волокнам типа А5 , при необходимости тестирования вызывается уколом иглы. Ноющая, более продолжительная и плохо локализованная "вторая боль"возникает отсроченно и проводится по волокнам типа С. В отличие от рецепторов эпи-критической чувствительности, которые являются специализированными образованиями, подавляющее большинство рецепторов протопатической (ноцицептивной) чувствительности представлено свободными нервными окончаниями.
Большинство ноцицепторов — это свободные нервные окончания, воспринимающие температурное, механическое и химическое воздействие на ткани. Описано несколько типов ноцицепторов: 1) механоноцицепторы, которые воспринимают щипки и уколы иглой- 2) молчащие ноцицепторы, которые активируются только в случае воспаления- 3) полимодальные механотермические ноцицепторы. Преобладают полимодальные механотермические ноцицепторы, они реагируют на чрезмерное давление, резкие изменения температуры (> 42 0C и < 18 0C) и алгогены (вещества, облегчающие восприятие боли рецепторами). К алгогенам относят брадикинин, гистамин, серотонин (5-гидрокситриптамин, 5-ГТ), ионы водорода и калия, некоторые простагландины и, возможно, аденозинтри-фосфат (АТФ). Полимодальные ноцицепторы медленно адаптируются к сильному давлению и сенситизируются к тепловым воздействиям. Специфические тепловые, холодовые и химические ноцицепторы описаны, но встречаются редко.
Кожные ноцицепторы
Ноцицепторы располагаются как в соматических тканях, так и во внутренних органах. Афферентные нейроны первого порядка достигают периферических тканей в составе спинномозговых соматических, симпатических, а также парасимпатических нервов. Соматические ноцицепторы расположены в коже (кожные ноцицепторы) и глубжележащих тканях (мышечные, сухожильные, фасциальные и костные ноцицепторы), в то время как висцеральные находятся во внутренних органах. Уникальность роговицы и пульпы зуба состоит в том. что они иннервированы исключительно ноцицеп-тивными волокнами типов А? и С.
Ноцицепторы, воспринимающие глубокую соматическую боль
Ноцицепторы, воспринимающие глубокую соматическую боль, хуже, чем кожные рецепторы, реагируют на ноцицептивное воздействие, но их чувствительность возрастает при воспалении. Болевые ощущения, передаваемые ими, плохо локализованы и воспринимаются как тупая, ноющая боль. Специфические ноцицепторы могут присутствовать в мышцах и суставных капсулах, они воспринимают механические, термические и химические стимулы.
ТАБЛИЦА 18-5. Нейротрансмиттеры — медиаторы и модуляторы боли
Висцеральные ноцицепторы
Во внутренних органах, которые в основном состоят из нечувствительных к болевым раздражителям тканей, располагаются молчащие ноцицепторы. Некоторые органы — например сердце, легкие, яички и желчные протоки — имеют специфические ноцицепторы. В большинстве органов (например, кишечник) находятся полимодальные механотер-мические ноцицепторы, которые реагируют на спазм гладкой мускулатуры, ишемию и воспаление. Эти рецепторы не активируются при разрезах, прижигании или сдавлении — т. е. при стимуляции, которая присуща хирургическим операциям. В некоторых органах ноцицепторов нет — например в головном мозге. Вместе с тем оболочки головного мозга содержат ноцицепторы.
Подобно соматическим ноцицепторам, висцеральные ноцицепторы являются свободными нервными окончаниями первых афферентных нейронов, тела которых расположены в заднем роге. Эти афферентные волокна часто проходят к внутренним органам в составе эфферентных симпатических нервов. Афферентные импульсы поступают в спинной мозг на уровне сегментов Т1-L2. Ноцицептивные волокна типа С от пищевода, гортани и трахеи проходят рядом с блуждающим нервом и заканчиваются синапсами на клетках одиночного ядра ствола мозга. Афферентные но-цицептивные волокна от мочевого пузыря, предстательной железы, прямой кишки, шейки матки, мочеиспускательного канала и наружных половых органов входят в спинной мозг с парасимпатическими нервами на уровне сегментов S2-S4.
2. ХИМИЧЕСКИЕ МЕДИАТОРЫ БОЛИ
Некоторые нейропептиды и активирующие (возбудительные) аминокислоты являются нейро-трансмиттерами при передаче ноцицептивного импульса (рис. 18-5). Подавляющее большинство нейронов содержат несколько нейротрансмиттеров, которые высвобождаются одновременно. Важнейшими из них являются субстанция P и пептид, ассоциированный с геном кальцитонина. Наиболее важная активирующая аминокислота — это глютамат (глютаминовая кислота).
Субстанция P — это пептид, состоящий из 11 аминокислот, который синтезируется и высвобождается первыми нейронами в периферических тканях и в задних рогах. Активируя рецепторы NK-1, субстанция P облегчает передачу импульса по путям проведения болевой чувствительности. На периферии нейроны, высвобождающие субстанцию P, посылают коллатерали к кровеносным сосудам, потовым железам, волосяным фолликулам и тучным клеткам кожи. Субстанция P вызывает сенситизацию ноцицепторов, высвобождение гистамина из тучных клеток и серотонина из тромбоцитов. Кроме того, субстанция P является мощным вазодилатато-ром и хемоаттрактантом для лейкоцитов. Нейроны, высвобождающие субстанцию P, иннервируют внутренние органы и посылают коллатерали в узлы симпатического ствола. Следовательно, интенсивная стимуляция внутренних органов может непосредственно вызвать мощную импульсацию по постганглионарным симпатическим волокнам.
На окончаниях немиелинизированных периферических нервов и в окружающих тканях обнаружены опиатные и ?2-адренорецепторы. Хотя их физиологическое значение до конца не выяснено, именно присутствием данных рецепторов можно объяснить аналгезию от аппликации опиоидов на периферии, особенно на фоне воспаления.
3. МОДУЛЯЦИЯ БОЛИ
Модуляция боли происходит на периферии в HO-цицепторах, в спинном мозге и в супраспинальных структурах. Модуляция может вызвать как инги-бирование (подавление восприятия), так и усиление (облегчение восприятия) боли.
Периферическая модуляция
При повторной стимуляции чувствительность ноцицепторов и ноцицептивных нейронов возрастает: этот феномен носит название сенситизации. Сенситизация может проявляться как усиление нейрональной реакции на ноцицептивный стимул, а также как появление реакции на другие стимулы, в том числе неноцицептивные.
А. Первичная гипералгезия. Сенситизация ноцицепторов сопровождается снижением порога возбуждения, увеличением частоты импульсации при стимуле той же интенсивности, сокращением латентного периода, а также спонтанной активацией после прекращения стимуляции. Подобная Сенситизация обычно происходит при травме и последующем воздействии тепла. Первичная гипералгезия опосредуется алгогенами, которые высвобождаются из поврежденных тканей. Гистамин выделяется из тучных клеток, базофилов и тромбоцитов, в то время как серотонин — из тучных клеток и тромбоцитов. Брадикинин высвобождается из тканей в результате активации XII фактора свертывающей системы крови. Воздействуя на специфические рецепторы B1 и B2, брадикинин активирует свободные нервные окончания.
При повреждении тканей фосфолипаза A2 воздействует на фосфолипиды клеточных мембран, что приводит к образованию арахидоновой кислоты (рис. 18-3). Циклооксигеназа катализирует ее превращение в эндопероксиды, которые в ходе дальнейших химических реакций трансформируются в простациклин и простагландин E2 (PGE2). Простагландин E2 непосредственно активирует свободные нервные окончания, в то время как простациклин усиливает отек тканей, вызванный бра-дикинином. Липоксигеназа превращает арахидоновую кислоту в гидроперекисные соединения, из которых образуются лейкотриены. Значение последних пока недостаточно ясно, но установлено, что они потенцируют некоторые типы боли. Аце-тилсалициловая кислота (аспирин), ацетамино-фен и нестероидные противовоспалительные средства (HПBC) дают аналгетический эффект, ингибируя циклооксигеназу. Кортикостероиды вызывают аналгезию, ингибируя фосфолипазу A2 и образование простагландинов.
Б. Вторичная гипералгезия. Нейрогенное воспаление, называемое также вторичной гипералгезией, играет важную роль в периферической сенситизации при повреждении. Вторичная гипералгезия проявляется триадой: гиперемия вокруг места повреждения, локальный отек тканей, сенси-тизация к ноцицептивным стимулам. Вторичная гипералгезия обусловлена главным образом антидромным высвобождением субстанции P и, возможно, пептида, ассоциированного с геном каль-цитонина, из коллатеральных аксонов первых афферентных нейронов. Субстанция P вызывает высвобождение гистамина и серотонина, вазодила-тацию, отек тканей и стимулирует образование лейкотриенов. Нейрогенное происхождение этой реакции подтверждается следующими фактами: 1) она возникает при ортодромной стимуляции чувствительного нерва- 2) она не наблюдается при денервации кожи- 3) ее можно ослабить инъекцией местного анестетика (например, лидокаина). Кап-саицин — химическое соединение, получаемое из красного перца,— вызывает дегрануляцию и истощение субстанции P. Аппликация капсаицина ослабляет нейрогенное воспаление и может быть полезна при постгерпетической невралгии.
Центральная модуляция
А. Усиление боли (облегчение восприятия).
В спинном мозге существуют по крайней мере три механизма центральной сенситизации:
1. "Реакция испуга" (см. выше) и сенситизация вторых нейронов пути болевой чувствительности. При повторяющейся стимуляции частота импульсации нейронов широкого динамизма ступенчато возрастает, даже если интенсивность повторного стимула не увеличивается. Кроме того, для нейронов широкого динамизма характерна спонтанная активация даже после прекращения поступления импульсов по афферентным волокнам типа С.
2. Расширение рецепторных полей. Вторые афферентные нейроны, расположенные в задних рогах, расширяют свои рецепторные поля таким образом, что окружающие их нейроны отвечают на те стимулы, к которым были до того интактны.
3. Гипервозбудимость сгибательных рефлексов. Усиление сгибательных рефлексов наблюдается как ипсилатерально, так и контралатерально.
Видео: Образование | 5 выпуск (Анатомия И Физиология Сердца)
Рис. 18-3. Фосфолипаза С (ФЛ С) катализирует гидролиз фосфатидилинозитола-4,5-бифосфата (ФИФ2), при этом образуются инозитолтрифосфат (ИФ3)и диацилглицерол (ДАГ). Важную роль играет протеинкиназа С (ПК С). Фосфолипаза A2 (ФЛ A2) катализирует превращение фосфатидилхолина (ФХ) в арахидоновую кислоту (AK)
К нейромедиаторам центральной сенситизации относятся субстанция P, пептид, ассоциированный с геном кальцитонина, вазоинтестинальный пептид, холецистокинин, ангиотензин, аланин, а также возбудительные аминокислоты — L-глютамат и L-аспартат. На мембране нейронов находятся рецепторы, связанные с G-белком. Нейромедиаторы взаимодействуют с этими рецепторами, что изменяет возбудимость мембраны нейрона. Тонкие механизмы этого взаимодействия включают активацию внутриклеточных вторичных мессенджеров, фосфорилирование белков, высвобождение ионов кальция из внутриклеточных депо (см. рис. 18-3).
Активируя NMDA- и нeNMDА-рецепторные механизмы, глютамат и аспартат играют важную роль в процессе "реакции испуга" (NMDA — это N-метил D-аспартат). Полагают, что эти аминокислоты в значительной степени ответственны за индукцию и поддержание центральной сенситизации. Активация NMDA-рецепторов увеличивает концентрацию внутриклеточного кальция в спинномозговых нейронах и активизирует фосфолипазу С (ФЛ С). Возросшая концентрация внутриклеточного кальция приводит к активации фосфолипазы A2 (ФЛ A2), которая катализирует превращение фосфатидилхо-лина (ФХ) в арахидоновую кислоту (AK), из которой, в свою очередь, образуются простагландины. Фосфолипаза С (ФЛ С) катализирует гидролиз фосфатидилинозитола-4,5-бифосфата (ФИФ2) на инозитолтрифосфат (ИФ3) и диацилглицерол (ДАГ), которые являются вторичными мессендже-рами. ДАГ активирует протеинкиназу С (ПК С).
Активация NMDA-рецепторов, кроме того, индуцирует синтетазу оксида азота и, следовательно, способствует образованию этого соединения. Простагландины и оксид азота облегчают высвобождение возбудительных аминокислот в спинном мозге. Следовательно, такие ингибиторы циклооксигена-зы, как ацетилсалициловая кислота и нестероидные противовоспалительные препараты, дают важный аналгегпический эффект на уровне спинного мозга.
Б. Ослабление боли (ингибирование, подавление болевой чувствительности). Проведение ноци-цептивного импульса в спинном мозге может быть
ингибировано сегментарной активностью непосредственно на уровне спинного мозга, а также нисходящими влияниями из супраспинальных центров.
1. Сегментарное ингибирование. Активация крупных афферентных волокон, опосредующих эпикритическую (неноцицептивную) чувствительность, ингибирует активность нейронов широкого динамизма и проведение импульсов по спинотала-мическому пути. Кроме того, ноцицептивная стимуляция в одной области ингибирует активность нейронов широкого динамизма и, соответственно, боль в другой области тела. Эти наблюдения подкрепляют "шлюзовую" теорию распространения болевых импульсов в спинном мозге.
Глицин и ?-аминомасляная кислота (ГАМК) -это аминокислоты, которые являются тормозными нейромедиаторами. Они играют важную роль в сег-ментарном ингибировании болевых ощущений на уровне спинного мозга. Антагонисты глицина и ?-аминомасляной кислоты вызывают выраженную активацию нейронов широкого динамизма, что приводит к аллодинии и гиперестезии. Существуют два подтипа ГАМК-рецепторов: ГАМКА, агонистом которых является мусцимол, и ГАМКВ, агонистом которых служит баклофен. Сегментарное ингибирование опосредовано через ГАМКв-рецепторы, активация которых ведет к повышению проницаемости клеточной мембраны для ионов калия. ГАМКА-ре-цепторы функционируют как канал для ионов хлора, их активация увеличивает проницаемость мембраны для Сl-. Бензодиазепины потенцируют влияние агонистов на ГАМКА-рецепторы. Активация глициновых рецепторов также увеличивает проницаемость мембраны нервной клетки для ионов хлора. Стрихнин и столбнячный токсин являются антагонистами глициновых рецепторов. Кроме того, глицин стимулирует NMDA-рецепторы, поэтому эффекты, которые он дает, сложнее эффектов ГАМК.
Аденозин тоже модулирует ноцицептивную активность в задних рогах спинного мозга. Известны по меньшей мере два рецептора: A1, активация которого ингибирует аденилатциклазу, и A2, стимуляция которого, напротив, ее активирует. Антиноцицептив-ное действие аденозина проявляется через A1-рецепторы. Метилксантины, ингибируя фосфодиэстеразу, блокируют антиноцицептивный эффект аденозина.
2. Супраспинальное ингибирование. Некоторые супраспинальные структуры посылают волокна в спинной мозг, ингибируя передачу болевых импульсов в задних рогах. Эти структуры включают центральное серое вещество (оно окружает водопровод мозга), ретикулярную формацию и ядро шва. Стимуляция центрального серого вещества вызывает у человека аналгезию всего тела. Аксоны этих нисходящих путей оказывают ингибирующее влияние — как пресинаптическое (на первые нейроны путей проведения болевой чувствительности), так и постсинаптическое (на вторые и вставочные нейроны). Антиноцицептивное действие опосредовано через ?2-адренорецепторы, серотониновые рецепторы, а также ?-, ?- и ?-опиатные рецепторы. Роль моноаминов в ингибировании боли объясняет аналгети-ческий эффект антидепрессантов, которые блокируют обратный захват катехоламинов и серотонина. Стимуляция этих рецепторов (которые также связаны с G-белками) активирует вторичные мессенджеры, что открывает калиевые каналы и ингибирует высвобождение кальция из внеклеточных депо.
Антиноцицептивные нисходящие адренергические пути начинаются главным образом в сером веществе коры и ретикулярной формации. Норадре-налин опосредует антиноцицептивный эффект через активацию пре- и постсинаптических ?2-адренорецепторов. По крайней мере часть аксонов из серого вещества коры переключаются на нейронах ядра шва и ретикулярной формации продолговатого мозга- из ядра шва серотонинергические волокна следуют в составе дорсолатерального канатика к нейронам задних рогов спинного мозга и ингибируют их активность.
Эндогенная опиатная система (представленная главным образом ядром шва и ретикулярной формацией) действует через метионин-энкефалин, лейцин-энкефалин и ?-эндорфин, антагонистом которых является налоксон. Эти опиоиды оказывают пресинаптическое действие, вызывая гиперполяризацию первых нейронов и ингибируя высвобождение субстанции P- они также обеспечивают некоторое постсинаптическое ингибирование. В противоположность им экзогенные опиоиды. оказывают главным образом постсинаптическое действие, ингибируя вторые или вставочные нейроны в студенистом веществе.
4. УПРЕЖДАЮЩАЯ АНАЛГЕЗИЯ
Возникновение концепции "упреждающей анал-гезии" при хирургическом вмешательстве было обусловлено осознанием важного значения периферической и центральной модуляции боли. Суть концепции "упреждающей аналгезии" состоит в том, что с помощью лекарственных препаратов необходимо добиться полноценной аналгезии до нанесения хирургической травмы. Для обеспечения этого эффекта можно использовать инфильтрационную анестезию, центральную блокаду, опиоиды, несте-роидные противовоспалительные препараты, кетамин. Экспериментальные данные свидетельствуют о том, что упреждаюшая аналгезия может значительно ослабить периферическую и центральную сенситизацию к ноцицептивным стимулам. Ряд клинических исследований также подтверждает эту концепцию: по их данным, упреждающая аналгезия снижает потребность в анальгетиках после операции, а также может улучшить исход.
Патофизиология хронической боли
Хроническая боль обусловлена сочетанием периферических, центральных и психологических факторов. Сенситизация ноцицепторов является главной причиной боли, обусловленной периферическими механизмами — например при заболеваниях опорно-двигательной системы и внутренних органов. Периферически-центральные и центральные механизмы сложны и обусловлены полным или частичным повреждением периферических нервов, спинномозговых узлов, корешков спинномозговых нервов и более центральных структур (табл. 18-6). Системное введение местных анестетиков и проти-восудорожных препаратов подавляет спонтанную импульсацию сенситизированных или травмированных нейронов. Это наблюдение подтверждается эффективностью лидокаина, мексилетина и карба-мазепина у некоторых больных с нейропатической болью.
ТАБЛИЦА 18-6. Периферически-центральные и центральные механизмы хронической боли
Видео: Возрастная анатомия и физиология. Любимова З.В., Никитина А.А.
У некоторых больных в периферически-центральных и центральных механизмах хронической боли главную роль играет симпатическая нервная система. У таких больных эффективным методом лечения является симпатическая блокада. К болевым синдромам, которые часто устраняются при симпатической блокаде, относятся рефлекторная симпатическая дистрофия, синдромы деафферен-тации (при отрыве нерва или ампутации конечности), постгерпетическая невралгия (опоясывающий лишай). Повышение симпатической активности вызывает вазоконстрикцию, отек и гипералгезию, но не позволяет объяснить появление эритемы и ощущение тепла у некоторых больных. Подобным же образом клинические и экспериментальные исследования не подтверждают теорию эфаптической передачи между волокнами болевой чувствительности и демиелинизированными симпатическими волокнами (эфаптический — контактный, от греч. ephapsis — контакт- имеется в виду контакт между отростками нейронов без формирования типичного синапса.— Примеч. ред.).Психологические факторы и влияние окружающей среды редко являются единственными причинами хронической боли — как правило, они сочетаются с другими механизмами (табл. 18-7). Психогенные боли сопровождаются значительной тревожностью, страхом телесного ущерба, преждевременной утратой интереса к жизни. Пожилые могут ощущать тревогу как боль.
ТАБЛИЦА 18-7. Психологические механизмы и факторы окружающей среды, способствующие возникновению хронической боли
Реакция организма на боль Острая боль
Острая боль обусловлена нейроэндокринной стрессовой реакцией, пропорциональной интенсивности боли. Пути проведения боли являются афферентным звеном этой реакции, они рассмотрены ранее. Эфферентное звено реализуется симпатической нервной системой и эндокринными органами. Активация симпатической нервной системы вызывает повышение тонуса эфферентных симпатических нервов внутренних органов и выброс катехоламинов из мозгового вещества надпочечников. Гормональные реакции обусловлены повышением симпатического тонуса и рефлексами, опосредованными через гипоталамус.
При небольших по объему или поверхностных хирургических операциях стресс незначителен или вообще отсутствует, в то время как вмешательства на верхнем этаже брюшной полости и органах грудной клетки сопровождаются выраженным стрессом. Послеоперационная (после абдоминальных и торакальных вмешательств) и посттравматическая боль оказывает непосредственное влияние на функцию дыхания. Иммобилизация или постельный режим при периферической локализации боли влияют на дыхание и состояние крови опосредованно. Умеренная и интенсивная боль, независимо от локализации, может оказывать влияние практически на все органы, увеличивая риск развития осложнений и летальность в послеоперационном периоде. Последнее положение доказывает, что лечение боли в послеоперационном периоде (см. ниже) является не просто гуманным требованием, но ключевым аспектом терапии.
А. Кровообращение. Боль вызывает выраженные изменения — подъем артериального давления, тахикардию, увеличение ОПСС. У лиц без сопутствующей патологии сердечный выброс обычно увеличивается, но при дисфункции левого желудочка может снижаться. Боль увеличивает потребность миокарда в кислороде и, соответственно, может усиливать или провоцировать ишемию миокарда.
Б. Дыхание. Увеличение потребления кислорода и выработки углекислого газа делает необходимым соответствующее повышение минутного объема дыхания. Повышение минутного объема дыхания увеличивает работу дыхания, особенно при сопутствующих заболеваниях легких. Болъ в области операционной раны после абдоминальных и торакальных вмешательств затрудняет дыхание — пациент "щадит" болезненное место. Снижение амплитуды дыхательных движений приводит к уменьшению дыхательного объема и функциональной остаточной емкости, что повышает риск развития ателектазов, внутрилегочного шунтирования, гипоксемии и, реже, гиповентиля-ции. Уменьшение жизненной емкости легких делает невозможным эффективный кашель и удаление мокроты из дыхательных путей. Длительный постельный режим и иммобилизация тоже могут вызывать подобные нарушения функции легких, причем независимо от локализации боли.
В. Желудочно-кишечный тракт и мочевыводящие пути. Усиление активности симпатической нервной системы приводит к увеличению тонуса сфинктеров и снижению моторики кишечника и мочевыводящих путей, что вызывает соответственно илеус и задержку мочи. Гиперсекреция желудочного сока чревата стрессовыми язвами, а ее сочетание с угнетением моторики предрасполагает к развитию тяжелых аспирационных пневмонитов. Тошнота, рвота и запоры являются распространенным явлением при боли. Вздутие кишечника приводит к снижению объема легких и нарушению функции дыхания.
Г. Органы внутренней секреции. При стрессе концентрация катаболических гормонов (катехол-амины, кортизол и глюкагон) увеличивается, а анаболических (инсулин и тестостерон), наоборот, снижается. Развиваются отрицательный азотистый баланс, непереносимость углеводов и повышенный липолиз. Повышение концентрации кортизола в сочетании с увеличением концентрации ренина, альдостерона, ангиотензина и антидиуретического гормона вызывает задержку натрия, воды и вторичное увеличение объема внеклеточного пространства.
Д. Кровь. При стрессе повышается адгезивность тромбоцитов и угнетается фибринолиз, что приводит к гиперкоагуляции.
E. Иммунитет. Стресс приводит к лейкоцитозу и лимфопении, а также угнетает ретикулоэндоте-лиальную систему. Последнее увеличивает риск развития инфекционных осложнений.
Ж. Общее самочувствие. Наиболее распространенной реакцией на острую боль является тревожность. Типичны нарушения сна. При продолжительных болях часто развивается депрессия. В некоторых случаях появляется раздражительность, часто направленная на медицинский персонал.
Хроническая боль
При хронической боли нейроэндокринная стрессовая реакция отсутствует или ослаблена. Стрессовые реакции встречаются при сильных рецидивирующих болях, обусловленных периферическими ноцицептивными механизмами, а также при болях явно центрального происхождения (например, боль, сочетанная с параплегией). Весьма выражены нарушения сна и аффективные расстройства, особенно депрессия. У многих больных наблюдаются значительные нарушения аппетита (как повышение, так и угнетение) и затруднение взаимоотношений в социальной сфере.
Поделиться в соцсетях:
Похожие