Хромосомная теория наследственности
В 1902 г., вскоре после вторичного открытия законов Менделя, `два генетика — А. Сэттон и Т. Бовери независимо друг от друга обнаружили удивительное сходство между поведением хромосом во время образования половых клеток и оплодотворения и насле-: дованием признаков организма. Они высказали ряд предположений, согласно которым: 1) хромосомы являются носителями наследственных факторов (термин «ген» был введен в обиход только в 1909 г. В.Иогансеном), 2) каждая пара факторов локализована в паре гомологичных хромосом, 3) каждая хромосома несет только по одному специфическому, уникальному фактору, 4) каждая хромосома содержит множество различающихся факторов, посколъку число признаков у любого организма гораздо больше числа его хромосом. Эти идеи заложили основу «хромосомной теории наследственности».Менделевский закон расщепления можно объяснить особенностями поведения хромосом во время мейоза. При образовании гамет распределение аллелей одной пары гомологичных хромосом происходит независимо от распределения других пар аллелей. Поскольку гаплоидное число хромосом в клетках человека равно 23, возможное число комбинаций в мужских или женских гаметах составляет 223.
Сцепление генов
В 1906 г. В. Бэтсон и Р. Пеннет, скрещивая две расы душистого горошка, различавшихся по двум парам признаков, не обнаружили в F2 расщепления в отношении 9:3:3:1. Признаки оставались в исходных родительских комбинациях. Они назвали это явление притяжением. Генетический анализ, проведенный на плодовой мушке дрозофиле Т. Г. Морганом и его учениками, показал, что основой притяжения генов являются хромосомы. Все гены, находящиеся в одной хромосоме, связаны между собой материальным субстратом хромосомы и в силу этого попадают в одну гамету. Гены, расположенные в одной хромосоме и наследующиеся целой группой, получили название группы сцепления. Явление совместного наследования генов, ограничивающее их свободное комбинирование в мейозе, назвали сцеплением генов.
В одном из экспериментов Т. Г. Морган провел несколько серий возвратного скрещивания между дрозофилой с серым телом и длинными крыльями и дрозофилой, у которой были черное тело и короткие крылья. Серое тело и длинные крылья доминируют. Во рсех сериях Морган получал одни и те же результаты: 41,5% потомков имели серое тело, длинные крылья- 41,5% — черное тело, короткие крылья- 8,5% — серое тело, короткие крылья и 8,5% — черное тело, длинные крылья. Если бы аллели, контролирующие развитие этих признаков, находились в одной и той же паре хромосом (т.е. были полностью сцеплены), в потомстве было бы 50 % мух с серым телом, длинными крыльями и 50% — с черным телом, короткими крыльями. Если бы гены, контролирующие эти признаки, лежали в разных хромосомах (т.е. не были сцеплены), они должны были бы распределяться независимо и давать 25% потомков с серым телом, длинными крыльями- 25% — с серым телом, короткими крыльями- 25% — с черным телом, длинными крыльями и 25% — с черным телом, короткими крыльями. Большинство потомков (83%) повторило исходные родительские фенотипы, что говорило о сцеплении изученных генов. Однако, помимо мух с родительскими фенотипами, появились 17% особей с новыми сочетаниями признаков, свидетельствовавшими о неполном сцеплении. Эти новые фенотипы были названы рекомбинантными, а потомки — рекомбинантами. Появление рекомбинантных сочетаний аллелей у 17% потомков объясняется обменом между гомологичными хромосомами во время мейоза. Это явление получило название кроссинговера. Морган предположил, что кроссинговер (обмен аллелями) происходит в результате разрыва и обмена участками гомологичных хромосом во время образования хиазм. Образование хиазм, которые можно непосредственно наблюдать под микроскопом, является цитологическим подтверждением кроссинговера (как генетического явления).
Процент рекомбинантных потомков, от опыта к опыту, для исследованных признаков оставался постоянной величиной. На этом основании А. Стертевант (ученик и сотрудник Моргана) высказал предположение о линейном расположении генов по хромосоме и показал, что величина кроссинговера (выражаемая в процентах) является функцией расстояния между генами. Чем больше расстояние, тем чаще образуются хиазмы, а следовательно, выше процент рекомбинантов, и, наоборот, чем меньше расстояние между генами, тем меньше процент рекомбинантных потомков.
Таким образом, относительные расстояния между генами можно измерять в процентах кроссинговера между ними. Принято считать, что 1% кроссинговера равен 1 сантиморганиде (в честь Т.Г.Моргана).
Хромосомные карты
Т.Г.Морган и его сотрудники были первыми, кто использовал явление кроссинговера для составления генетических карт хромосом. Генетическая карта — это схема линейного расположения генов, локализованных в одной группе сцепления. Карта хромосомы строится путем перевода частоты рекомбинаций между генами в относительные расстояния на хромосоме, выраженные в морганидах. Например, если частота рекомбинаций между генами А и Б равна2,4%, то это свидетельствует, что они расположены на одной и той же хромосоме на расстоянии 2,4 сантиморганиды друг от друга. Если частота рекомбинаций между генами Б и В составляет 6,6%, то они разделены расстоянием 6,6 сантиморганид. Однако приведенные данные не позволяют определить точную последовательность расположения генов на хромосоме (рис. III.10), и только оценив расстояние между генами А и В (в данном случае 9%), можно уверенно сказать, что ген Б должен находиться между генами А и В.
Рис. III. 10.
Схема определения последовательности генов в хромосоме
Видео: Научфильм Хромосомная теория наследственности
Таким образом, с помощью кроссинговера можно определить группу сцепления и места расположения генов относительно друг друга. Факт сцепления свидетельствует, что гены находятся в одной хромосоме. Однако свободное их сочетание еще не доказывает, что они расположены в разных хромосомах. Если частота рекомбинаций составляет 50%, то результаты анализа фенотипа потомков не будут отличаться от результатов анализа расщепления при независимом наследовании генов (см. гл. V). Это может происходить, если исследованные гены расположены на значительном расстоянии друг от друга. Для обозначения генов, находящихся в одной и той же хромосоме, но, возможно, и не сцепленных между собой, используется понятие синтеиии (от греч. syn - вместе + tainia - лента). Понятие синтении отражает, таким образом, материальную непрерывность хромосомы как реального материального объекта и не несет сегрегационного смысла.
Долгое время полагали, что число групп сцеплений у человека равно гаплоидному набору хромосом и составляет 23 группы. В настоящее время доказано, что у человека имеется 25 групп сцепления. 22 группы отождествляют с числом пар аутосомных хромосом (22 пары), Х-хромосома и Y-хромосома рассматриваются как две независимые группы сцепления, и гены, локализованные в ДНК митохондрий, формируют 25-ю группу сцепления.
К настоящему времени для человека получены подробные цитологические карты всех хромосом, включая хромосому митохондрий. В качестве примера приведена карта 1-й (рис. III.11) и X-хромосомы (рис. III.12) человека. Установлена (картирована) точная хромосомная локализация более чем для 6 тысяч генов, что составляет только около 15 % от общего числа генов в геноме. В настоящее время хромосомная теория наследственности, сохраняя и дополняя основные классические представления, отражает современные знания о молекулярной организации хромосом, их функционировании как единой материальной структуры в системе целостного генотипа.
Видео: Хромосомная теория наследственности. Учебный фильм
Поделиться в соцсетях:
Похожие